ĐK: \(x>0,x\ne1\)
a) \(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left[\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right]=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]:\left[\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right):\left[\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\right]=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Ta có \(M< 0\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 0\)(*)
Vì \(\sqrt{x}+1>0\)
(*)\(\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)
Kết hợp với ĐK, Vậy 0<x<1 thì M<0