Đề sai rồi bạn ạ
Phải là Cho M=\(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)
Chứng minh: M10<1025
Với a,b,c là các số tự nhiên khác 0 và phân số \(\dfrac{a}{b}\)<1, ta luôn có:\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
Áp dụng bất đẳng thức trên ta có:
\(\dfrac{x}{x+y+z}< \dfrac{x+t}{x+y+z+t}\)
\(\dfrac{y}{x+y+t}< \dfrac{y+z}{x+y+z+t}\)
\(\dfrac{z}{y+z+t}< \dfrac{z+x}{x+y+z+t}\)
\(\dfrac{t}{x+z+t}< \dfrac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}\)
=2
\(\Rightarrow M^{10}< 2^{10}=1024< 1025\)
\(\Rightarrow\)M10<1025 (đpcm)