Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Lê

1.Cho x;y;z;t thuộc Z.Chứng minh rằng:

\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) có giá trị không phải là số tự nhiên.

2.Chứng minh rằng: \(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-.....-\dfrac{1}{100^2}>\dfrac{1}{100}\)

nguyễn Thị Bích Ngọc
21 tháng 4 2017 lúc 17:11

Ta có : \(1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)>1-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)=1-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1-\left(1-\dfrac{1}{100}\right)=1-1+\dfrac{1}{100}=\dfrac{1}{100}\)

Vậy \(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-.......-\dfrac{1}{100^2}>\dfrac{1}{100}\)

nguyễn Thị Bích Ngọc
21 tháng 4 2017 lúc 17:01

Xét \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)

\(\dfrac{y}{x+y+t+z}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)

\(\dfrac{z}{y+z+t+x}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)

\(\dfrac{t}{x+z+t+y}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)

Cộng cả ba vế , ta được :

\(\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}< \dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}< \dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{z}{z+t}+\dfrac{t}{z+t}\)

\(\Rightarrow\dfrac{x+y+z+t}{x+y+z+t}< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}\)

\(\Rightarrow1< M< 2\)

Vậy M không phải số tự nhiên