Ta có : \(1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)>1-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)=1-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1-\left(1-\dfrac{1}{100}\right)=1-1+\dfrac{1}{100}=\dfrac{1}{100}\)
Vậy \(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-.......-\dfrac{1}{100^2}>\dfrac{1}{100}\)
Xét \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)
\(\dfrac{y}{x+y+t+z}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)
\(\dfrac{z}{y+z+t+x}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)
\(\dfrac{t}{x+z+t+y}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)
Cộng cả ba vế , ta được :
\(\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}< \dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}< \dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{z}{z+t}+\dfrac{t}{z+t}\)
\(\Rightarrow\dfrac{x+y+z+t}{x+y+z+t}< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}\)
\(\Rightarrow1< M< 2\)
Vậy M không phải số tự nhiên