Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Lê

1.Cho x;y;z;t thuộc Z.Chứng minh rằng:

\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) có giá trị không phải là số tự nhiên.

2.Chứng minh rằng: \(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-.....-\dfrac{1}{100^2}>\dfrac{1}{100}\)

nguyễn Thị Bích Ngọc
21 tháng 4 2017 lúc 17:11

Ta có : \(1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)>1-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)=1-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1-\left(1-\dfrac{1}{100}\right)=1-1+\dfrac{1}{100}=\dfrac{1}{100}\)

Vậy \(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-.......-\dfrac{1}{100^2}>\dfrac{1}{100}\)

nguyễn Thị Bích Ngọc
21 tháng 4 2017 lúc 17:01

Xét \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)

\(\dfrac{y}{x+y+t+z}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)

\(\dfrac{z}{y+z+t+x}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)

\(\dfrac{t}{x+z+t+y}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)

Cộng cả ba vế , ta được :

\(\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}< \dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}< \dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{z}{z+t}+\dfrac{t}{z+t}\)

\(\Rightarrow\dfrac{x+y+z+t}{x+y+z+t}< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}\)

\(\Rightarrow1< M< 2\)

Vậy M không phải số tự nhiên


Các câu hỏi tương tự
Moon Moon
Xem chi tiết
Trần Đức Mạnh
Xem chi tiết
Lyn Lee
Xem chi tiết
Tiến Đạt
Xem chi tiết
Heo Mách
Xem chi tiết
Nguyễn Quỳnh Trang
Xem chi tiết
daohung1717
Xem chi tiết
Đỗ Thu Trà
Xem chi tiết
Nguyễn Thị Ngọc Linh
Xem chi tiết