\(lim\left(u_n+kv_n\right)=limu_n+limkv_n=2007\)
\(\Leftrightarrow5+13k=2007\\ \Leftrightarrow k=154\)
\(lim\left(u_n+kv_n\right)=limu_n+limkv_n=2007\)
\(\Leftrightarrow5+13k=2007\\ \Leftrightarrow k=154\)
Cho hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\). Biết \(\lim\limits u_n=3;\lim\limits v_n=+\infty\). Tính các giới hạn :
a) \(\lim\limits\dfrac{3u_n-1}{u_n+1}\)
b) \(\lim\limits\dfrac{v_n+2}{v^2_n-1}\)
Cho hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\). Chứng minh rằng nếu \(\lim\limits v_n=0\) và \(\left|u_n\right|\le v_n\) với mọi n thì \(\lim\limits u_n=0\) ?
a) Cho hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\). Biết \(\lim\limits u_n=-\infty\) và \(v_n\le u_n\) với mọi \(n\). Có kết luận gì về giới hạn của dãy \(\left(v_n\right)\) khi \(n\rightarrow+\infty\) ?
b) Tìm \(\lim\limits v_n\) với \(v_n=-n!\)
Câu 1: lim \(\frac{1^3+2^3+...+n^3}{n\left(n^3+1\right)}\)
Câu 2: lim (\(4+\frac{\left(-1\right)^n}{n+1}\) )
Câu 3: lim\(\sqrt{9-\frac{cos2n}{n}}\)
Câu 4: lim ( \(n^2sin\frac{n\pi}{5}-2n^3\))
Câu 5: Cho \(u_n=\frac{\left(-1\right)^n}{n^2+1}\) và \(v_n=\frac{1}{n^2+2}\). Khi đó tính lim \(\left(u_n+v_n\right)\)
Tìm \(lim\) \(u_n\), biết \(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\).
A. \(lim\) \(u_n=\dfrac{3}{4}\).
B. \(lim\) \(u_n=\dfrac{3}{5}\).
C. \(lim\) \(u_n=\dfrac{2}{3}\).
D. \(lim\) \(u_n=\dfrac{4}{3}\).
Giải thích chi tiết bước làm và tại sao lại làm như vậy.
cho dãy số (un) có số hạng \(u_n=\dfrac{2^n+5^n}{5^n}+\dfrac{3^n+8^n}{3^n}\). tính \(lim\left(u_n\right)\)
Cho số thực a khác 0 và dãy số \(\left(u_n\right)_{\left(n\ge1\right)}\) xác định bởi \(\left\{{}\begin{matrix}u_1=a\\2u_{n+1}=u_n+\dfrac{4\left(n+1\right)}{nu_n}\end{matrix}\right.\)
Tìm lim \(u_n\)
Cho dãy số (un) thỏa mãn u1 = \(\dfrac{2}{3}\) và un+1 = \(\dfrac{u_n}{2\left(2n+1\right)u_n+1}\left(n\ge1\right)\). Tìm số hạng tổng quát un của dãy. Tính lim un
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{u_n^{2016}}{2015}+u_n\end{matrix}\right.\). Tính \(s=lim\left(\dfrac{u_1^{2015}}{u_2}+\dfrac{u_2^{2015}}{u_3}+...+\dfrac{u_n^{2015}}{u_{n+1}}\right)\)