Tính tổng
Q=\(C_n^1\)+2\(\dfrac{C_n^2}{C_n^1}+...+k\dfrac{C^k_n}{C^{k-1}_n}+...+n\dfrac{C_n^n}{C^{n-1}_n}\) Với k,n \(\in N\)
15 nCk = 7 nCk+1
<=> 15(k+1)=7(n-k)
Khai triển như thế nào mà ra vế dưới được vậy ạ?
Cho p là một số nguyên tố và k là số nguyên sao cho : \(1\le k\le p-1\)
Chứng minh rằng : \(C^k_p⋮p\)
cho khai triển (2x+1)^10. tính tổng hệ số của số hạng chứa x^k với k>=8
Tính F = \(2.1.C_{2021}^2+3.2.C_{2021}^3+...+k\left(k-1\right)C_{2021}^k+...+2021.2020.C_{2021}^{2021}\)
tìm n biết n là số nguyên dương thỏa mãn C0n+3^2*C1n+3^4*C2n+...+3^2n*Cnn=100^5
Giúp mình với ạ, mình cảm ơn rất nhiều!!!
Với x\(\ne-1\) \(\left(\dfrac{x^2+2x+2}{x+1}\right)^{2018}=a_0+a_1x+a_2x^2+...+a_kx^{2018}+\dfrac{b_1}{x+1}+\dfrac{b_2}{\left(x+1\right)^2}+...+\dfrac{b_{2018}}{\left(x+1\right)^{2018}}.\). Tính: S=\(\sum\limits^{2018}_{k=1}bx\)
Cho nhị thức \(\left(2x^2+\dfrac{1}{x^3}\right)^n,\left(x\ne0\right)\) trong đó số nguyên dương n thoả mãn \(2^nC^0_n+2^{n-1}C^1_n+2^{n-2}C^2_n+...+C^n_n=59049\). Tìm số hạng chứa \(x^5\) trong khai triển.
Tính tổng: \(S=n\left(C^0_{n-1}+C^1_{n-1}+C^2_{n-1}+...+C^{n-1}_{n-1}\right)\)
Cho \(\left(1+2x\right)^n=a_0+a_1x+...+a_nx^n\) và \(a_0+a_1+...+a_n=729\). Tìm n và số hạng thứ 5