Bài 2: Cho hình bình hành ABCD có CD = 16 cm, đường cao vẽ từ A đến cạnh CD bằng 12 cm. \
a,Tính diện tích hình bình hành ABCD.
b,Gọi M là trung điểm AB, Tính diện tích tam giác ADM.
c,DM cắt AC tại N. Chứng minh rằng DN= 2NM
d, Tính diện tích tam giác AMN.
Cho ABC nhọn có M là trung điểm của BC.Chứng minh : SABM =SAMC
(Hướng dẫn : Kẻ AH vuông góc với BC tại H)
Bài 1 : Cho tam giác ABC vuông tại A có AB < AC . Tia phân giác của ABC) của cạnh AC tại D kẻ DE .!. BC ( E € BC ) a, Tính độ dài AB nếu cho AC = 12cm ; BC = 15cm b, chứng minh ∆ ADB = ∆EDB , từ đó suy ra DB là tia phân giác của ADE) c, Vẽ EF // BD ( F thuộc DC ) . Chứng minh BDE) = MED và tam giác DEF cân d, chứng minh BD là đường trung trực của AE
Cho tam giác ABC , đường phân giác BD . Từ D kẻ đường thẳng song song với AB cắt BC tại E . Từ D kẻ đường thẳng song song với BC cắt AB tại F . a) Chứng minh tứ giác BEDF là hình thoi. b) Vẽ M đối xứng với F qua B . Tứ giác BDEM là hình gì? Vì sao? c) Lấy N đối xứng với E qua B . Chứng minh tứ giác MNFE là hình chữ nhật. d)Lấy P làmộtđiểmbấtkìtrênđườngthẳng BD, Q làđiểmđốixứngvới P qua A. Khi P chạy trên đường thẳng BD cố định thì Q chạy trên đường thẳng cố định nào?
cho hai hình vuông có cạnh 16 cm và 10 cm , có một phần chồng lên nhau. người ta dùng diện tích tích phần còn lại (không chồng lên nhau )để trang trí. Hỏi diện tích phần để trang trí của hình vuông lớn nhiều hơn diện tích phần để trang trí của hình vuông nhỏ là bao nhiêu cm vuông.
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB; F thuộc AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành.
c) Tam giác ABC cần thêm điều kiện gì thì tứ giác AEHF là hình vuông?
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB; F thuộc AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành.
Gọi M là trung điểm của BC. Từ M kẻ MP vuông gốc vs AI.MQ vuông góc vs AC. Lấy G đx vs M qua AB. K đx vs M qua AC . Chứng Minh AGBM, AMCK là hình thoi