Cho tam giác ABC cân đỉnh A, lấy D bất kì trên BC qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt ở E và F. I và K lần lượt là trung điểm của BE và F C. Chứng minh tứ giác IDKA là hình bình hành.
Cho hình thang vuông ABCD (AB //CD, ) AB = 3cm, DC = 5cm. Gọi M và N lần lượt là trung điểm của AD và BC. Đường thẳng qua B song song với AD cắt DC tại E. a) Tính MN. b) Tứ giác ABED là hình gì? Vì sao? c) Gọi I là giao điểm của BE và MN. Chứng minh MI = 3.IN. d) Chứng minh tam giác ENC cân.
Cho Tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. Từ M dựng đường thẳng vuông góc với AB và AC, cắt AB và AC lần lượt tại I và K. a) Biết BC = 10cm. Tính IK và chứng minh tứ giác AIMK là hình chữ nhật. b) Trên tia MI lấy điểm E sao cho I là trung điểm ME, trên tia MK lấy điểm F sao cho K là trung điểm MF. Chứng minh K là trung điểm AC và tứ giác EMCA là hình bình hành. c) Chứng minh tứ giác AMCF là hình thoi. d) Kẻ AH ⊥ BC tại H. Giả sử IK = 2.HM. Tính số đo góc ABC
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E , F, G, H lần lượt là các trung điểm của các cạnh AB, BC, CD, DA.
a) Tứ giác EFGH là hình gì.
b) Biết Ac = 10cm, BD = 8cm. Tính diện tích tứ giác EFGH.
c) Cần có điều kiện gì để tứ giác EFGH là hình vuông
Bài 1: Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân Các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?
Bài 2: Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. D, E lần luợt là hình chiếu của M lên AB và AC.
a) Chứng minh: ADME là hình chữ nhật.
b) Chứng minh: BDEM là hình bình hành.
c) Gọi O là giao điểm của BE và DM, I là trung điểm của EC. Chứng minh: AOMI là hình thang cân.
d) Vẽ đường cao AH của DABC. Tính số đo ∠DHE.
cho hình bình hành abcd có ad = 2ab. Gọi e và f lần lượt là trung điểm của ab và cd.
a)Chứng minh tứ giác aefc là hình bình hành.
b) tứ giác aefd là hình gi? Tại sao?.
c) bd cắt af và ce lần lượt tại h, k. Chứng minh rằng dh=hk=kb.
d) Gọi o là giao điểm của ef và hk. Chứng minh h đối xứng với k qua o
Cho tam giác ABC cân tại A (A <90°). Gọi M. N lần lượt là trung điểm của AB và AC. a) Tinh MN biết BC =7cm. b) Chứng minh rằng tử giác MNCB là hình thang cân. c) Kẻ MI vuông góc với BN tại I, (I thuộc BN) và CK vuông góc với BN tại K (K thuộc BN). Chứng minh rằng : CK=2MI. d) Kẻ BD vuông góc với MC tại D (D thuộc MC). Chứng minh rằng DK // BC,(mik cần gấp phần c và d ạ)
Cho hình bình hành ABCD có AD = 2AB, góc A = 60°. Gọi E, F lần lượt là trung điểm của BC và AD a) Chứng minh tứ giác ABEF là hình bình hành b) Chứng minh tứ giác BFDC là hình thang cân