Lời giải:
Giả sử tiếp điểm có hoành độ $x_0$. Phương tình tiếp tuyến tại tiếp điểm là:
\(y=f'(x_0)(x-x_0)+f(x_0)=\frac{-x}{(x_0-1)^2}+\frac{2x_0^2-2x_0+1}{(x_0-1)^2}\) (\(\Delta\))
Khoảng cách từ \(\Delta\) đến \(I(1,2)\) là :
\(d=\frac{\left | \frac{-1}{(x_0-1)^2}-2+\frac{2x_0^2-2x_0+1}{(x_0-1)^2} \right |}{\sqrt{\frac{1}{(x_0-1)^4}+1}}=\sqrt{2}\Rightarrow x_0\in\left \{0;2 \right \}\)
Do đó có 2 PTTT là:\(\left\{\begin{matrix}y=-x+1\\ y=-x+5\end{matrix}\right.\)