ĐKXĐ: ...
Bình phương 2 vế:
\(\frac{x^2}{x^2-1}+x^2+\frac{2x^2}{\sqrt{x^2-1}}=15\)
\(\Leftrightarrow\frac{x^4}{x^2-1}+\frac{2x^2}{\sqrt{x^2-1}}-15=0\)
Đặt \(\frac{x^2}{\sqrt{x^2-1}}=a>0\) ta được:
\(a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\frac{x^2}{\sqrt{x^2-1}}=3\Leftrightarrow x^4=9\left(x^2-1\right)\)
\(\Leftrightarrow x^4-9x^2+9=0\Rightarrow\left[{}\begin{matrix}x^2=\frac{9+3\sqrt{5}}{2}\\x^2=\frac{9-3\sqrt{5}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{\frac{9+3\sqrt{5}}{2}}\\x=\pm\sqrt{\frac{9-3\sqrt{5}}{2}}\end{matrix}\right.\)