Cho hàm số \(y=\frac{mx^2+x+m}{x-1}\left(C\right)\). Tìm m để (C) cắt Ox tại hai điểm phân biệt có hoành độ dương
Cho hàm số \(y=x^4-\left(3m+2\right)x^2+3m\) có đồ thị là \(\left(C_m\right)\), m là tham số. Tìm m để đường thẳng y = -1 cắt đồ thị \(\left(C_m\right)\) tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2
Cho hàm số \(y=x^3-2x^2+\left(1-m\right)x+m\left(1\right)\), m là số thực. Tìm m để đồ thị hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ \(x_1;x_2;x_3\) thỏa mãn điều kiện \(x_1^2+x^2_2+x^2_3
Cho hàm số \(y=-x^4+2\left(2+m\right)x^2-3-2m\left(1\right)\) với m là tham số. Tìm tất cả các giá trị của m để đồ thị hàm số (1) cắt trục hoành tại 4 diểm phân biệt có hoành độ lập thành một cấp số cộng
Tìm m để (Cm) y=x3-(2m+1)x2-9x cắt trục hoành tại 3 điểm phân biệt có hoành độ lập thành 1 cấp số cộng.
Tìm m để đồ thị hàm số: y=mx cắt đồ thị y= x3-3x2 tại ba điểm phân biệt trong đó có hai điểm có hoành độ dương
Tìm m để đường thẳng (d) y = x + m cắt đồ thị y =\(x^3-3\left(m+1\right)x^2+mx+1\) (C) tại 3 điểm phân biệt
Cho hàm số y=x3−3x+1y=x3−3x+1 (Cm)(Cm) , đường thẳng (d):y=mx+m+3(d):y=mx+m+3. Có bao nhiêu giá trị thực của m để (d)(d) cắt (Cm)(Cm) tại ba điểm phân biệt M(−1;3),N,PM(−1;3),N,P sao cho tiếp tuyến của (Cm)(Cm) tại N và P vuông góc với nhau?
Cho hàm số \(y=x^4-2x^2\) có đồ thị \(\left(C\right)\). Tìm các giá trị của m để đường thẳng y = m cắt đồ thị (C) tại 4 điểm phân biệt E, F, M, N. Tính tổng hệ số góc của tiếp tuyến tại các điểm E, F, M, N