Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :
\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là
\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)
Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là :
\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)
Dễ thất điểm O không thuộc d nên ABO là một tam giác.
Tam giác ABO vuông tại O khi và chỉ khi :
\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)
Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)
Thay vào trên ta được :
\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)
Vậy \(m=-3\) hoặc \(m=-1\)