a/thay m= 1 ta có hpt:
\(\left\{{}\begin{matrix}x+y=3\\4x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-4x=3m-6\\4x+my=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m^2-4\right)=3\left(m-2\right)\\4x+my=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(m+2\right)=3\\4x+my=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{m+2}\\y=\dfrac{\left(6-4\cdot\dfrac{3}{m+2}\right)}{m}\end{matrix}\right.\)
x, y nguyên dương => \(\left\{{}\begin{matrix}\dfrac{3}{m+2}>0\Leftrightarrow m>-2\\\dfrac{\left(6-\dfrac{12}{m+2}\right)}{m}>0\Leftrightarrow-2< m< 0\cup m>0\end{matrix}\right.\)
\(\Leftrightarrow m>-2;m#0\)