a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
Cho hpt \(\left\{{}\begin{matrix}2x+y=8\\4x+my=2m+18\end{matrix}\right.\)
Với (x,y) là nghiệm duy nhất. Tìm m để:
a) \(A=x^2+y^2\) đạt GTNN
b) \(B=xy\) đạt GTLN
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
Tìm m để HPT có nghiệm duy nhất (x;y) sao cho x,y có giá trị nhỏ nhất.
Cho hệ phương trình \(\left\{{}\begin{matrix}mx+2y=18\\x-y=-6\end{matrix}\right.\) (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(2x+y=9\\\)
giải hệ phương trình \(\left\{{}\begin{matrix}mx+2y=m+1\\x-y=2\end{matrix}\right.\)
a, giải hệ phương trình khi m=2
b, tìm m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn xy = x+y+2
Cho hệ phương trình \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\) có nghiệm (x; y). Tìm m để biểu thức (xy+x-1) đạt giá trị lớn nhất.
cho hệ: \(\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\)
a. giải hệ phương trình khi m=2
b. tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: x2 - y2=\(\dfrac{5}{2}\)
cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=4\\x+2y=5\end{matrix}\right.\)
tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn x > y > 0
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm (x,y) thỏa mãn x2 - 2x - y > 0
Cho hệ phương trình:\(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\)(m là tham số)
1.Giải hệ phương trình với m=1
2.Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn đẳng thức \(x^2+2y^2=2\)