Cho HPT: \(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\)
Tìm giá trị nguyên của m để hai đường thẳng của hệ cắt nhau tại một điểm nằm trong góc phần tư thứ IV trên mặt phẳng tọa độ Oxy
@Akai Haruma giúp em với ạ
ta thấy hệ luôn có nghiệm với mọi m
hệ nghiệm (x,y) duy nhất là \(x=\dfrac{16m-18}{6+m^2};y=\dfrac{48+9m}{6+m^2}\)
hệ cắt nhau tại một điểm nằm trong góc phần tư thứ IV <=>
x>0 và y<0 <=>
\(\left\{{}\begin{matrix}\dfrac{16m-18}{m^2+6}>0\\\dfrac{48+9m}{m^2+6}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{18}{16}\\m< \dfrac{-48}{9}\end{matrix}\right.\) vô nghiệm