Ta có: MNPQ là hình vuông(gt)
⇔MN=MQ=QP=NP
mà MN=5cm
nên MQ=QP=5cm
Áp dụng định lí pytago vào ΔMQP vuông tại Q, ta được:
\(MP^2=MQ^2+QP^2\)
\(\Leftrightarrow MP^2=5^2+5^2=50\)
\(\Leftrightarrow MP=\sqrt{50}=5\sqrt{2}cm\)
Ta có: ΔMQP cân tại Q(MQ=PQ)
mà QK là đường cao ứng với cạnh đáy MP(gt)
nên QK là đường trung tuyến ứng với cạnh đáy MP(định lí tam giác cân)
⇒K là trung điểm của MP
⇒\(MK=PK=\frac{MP}{2}=\frac{5\sqrt{2}}{2}=\frac{5}{\sqrt{2}}cm\)
Ta có: ΔMQP vuông tại Q(MQ⊥QP)
mà QK là đường trung tuyến ứng với cạnh huyền MP(gt)
nên \(QK=\frac{MP}{2}\)(định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
⇒\(QK=\frac{5\sqrt{2}}{2}=\frac{5}{\sqrt{2}}cm\)
Vậy: \(MK=\frac{5}{\sqrt{2}}cm\); \(KP=\frac{5}{\sqrt{2}}cm\); \(QK=\frac{5}{\sqrt{2}}cm\)