Để chứng minh 1) AE = AN, ta sẽ sử dụng định lí hai đường trung bình của tam giác.Theo định lí hai đường trung bình, AM là đường trung bình của tam giác ABC.Vì vậy, ta có AM = 1/2(AB + AC).Đồng thời, ta cũng có AN là đường trung bình của tam giác ADC.Từ đó, ta có AN = 1/2(AD + AC).Do đó, để chứng minh AE = AN, ta cần chứng minh AE = 1/2(AB + AD).Ta biết rằng AE là đường cao của tam giác ABC với cạnh AB.Vì vậy, ta có AE = √(AB^2 - AM^2) (với AM là đường trung bình của tam giác ABC)Tương tự, ta biết rằng AN là đường cao của tam giác ADC với cạnh AD.Vì vậy, ta cũng có AN = √(AD^2 - AM^2) (với AM là đường trung bình của tam giác ADC)
Sửa đề: Cắt CD tại E
1: Sửa đề: Chứng minh AE=AM
góc BAM+góc DAM=90 độ
góc DAM+góc EAD=90 độ
=>góc BAM=góc EAD
Xét ΔBAM vuông tại B và ΔDAE vuông tại D có
AB=AD
góc BAM=góc DAE
=>ΔBAM=ΔDAE
=>AM=AE
2: 1/AM^2+1/AN^2
=1/AE^2+1/AN^2
ΔAEN vuông tại A có AD là đường cao
nên 1/AE^2+1/AN^2=1/AD^2=1/AB^2
=>1/AB^2=1/AM^2+1/AN^2