Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương

Cho hình vuông ABCD và M thuộc BC , Kéo dài AM cắt DC tại N . Qua A kẻ đường thẳng vuông góc AM cắtCB tại E.C/m

1)AE=AN

2)\(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)

meme
23 tháng 8 2023 lúc 10:05

Để chứng minh 1) AE = AN, ta sẽ sử dụng định lí hai đường trung bình của tam giác.Theo định lí hai đường trung bình, AM là đường trung bình của tam giác ABC.Vì vậy, ta có AM = 1/2(AB + AC).Đồng thời, ta cũng có AN là đường trung bình của tam giác ADC.Từ đó, ta có AN = 1/2(AD + AC).Do đó, để chứng minh AE = AN, ta cần chứng minh AE = 1/2(AB + AD).Ta biết rằng AE là đường cao của tam giác ABC với cạnh AB.Vì vậy, ta có AE = √(AB^2 - AM^2) (với AM là đường trung bình của tam giác ABC)Tương tự, ta biết rằng AN là đường cao của tam giác ADC với cạnh AD.Vì vậy, ta cũng có AN = √(AD^2 - AM^2) (với AM là đường trung bình của tam giác ADC)

Nguyễn Lê Phước Thịnh
24 tháng 8 2023 lúc 8:33

Sửa đề: Cắt CD tại E

1: Sửa đề: Chứng minh AE=AM

góc BAM+góc DAM=90 độ

góc DAM+góc EAD=90 độ

=>góc BAM=góc EAD

Xét ΔBAM vuông tại B và ΔDAE vuông tại D có

AB=AD

góc BAM=góc DAE

=>ΔBAM=ΔDAE
=>AM=AE

2: 1/AM^2+1/AN^2

=1/AE^2+1/AN^2

ΔAEN vuông tại A có AD là đường cao

nên 1/AE^2+1/AN^2=1/AD^2=1/AB^2

=>1/AB^2=1/AM^2+1/AN^2


Các câu hỏi tương tự
Nguyễn Thùy Chi
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
LoHoTu
Xem chi tiết
Y Le
Xem chi tiết
Phan Quỳnh Như
Xem chi tiết
Nguyễn Quỳnh Anhh
Xem chi tiết
Trịnh Minh Tuấn
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Mai Thị Huyền
Xem chi tiết