a) xét tam giác AED(góc EAD=90)và tam giác CFD(góc FCD=90)
AD=DC(gt)
AE=CF(gt)
vậy tam giác AED=tam giác CFD
=>góc ADE=góc CDF(2 góc tương ứng)
ta có:góc ADE+góc EDC=90
mà góc ADE=góc CDF nên góc CDF+góc EDC=90
a) xét tam giác AED(góc EAD=90)và tam giác CFD(góc FCD=90)
AD=DC(gt)
AE=CF(gt)
vậy tam giác AED=tam giác CFD
=>góc ADE=góc CDF(2 góc tương ứng)
ta có:góc ADE+góc EDC=90
mà góc ADE=góc CDF nên góc CDF+góc EDC=90
Cho tam giác ABD vuông tại A có AB <AD . M là trung điểm của BD . GọiC là điểm đối xứng với A qua M
a, CM tứ giác ABCD là hình chữ nhật
b, Trên tia đối của tia DA lấy E sao cho DE=DA. Gọi I là trung điểm của CD CM: IB=IE
c, gọi AH là đường cao của tam giác ABD và K là điểm đối xứng với A qua H. CM: tứ giác BDCK là hình thang cân
d , chứng minh rằng k,C,E thẳng hàng
Cho tam giác ABC cân tại A có đường cao AD . Lấy điểm H thuộc đoạn
thẳng AD , gọi K là điểm đối xứng với điểm H qua điểm D
1) Tứ giác BHCK là hình gì? Vì sao?
2) Đường thẳng vuông góc với đường thẳng BC tại C cắt tia BK tại điểm M . Chứng minh rằng: KM =HC .
3) Qua điểm M kẻ đường thẳng song song với đường thẳng BC cắt tia CK tại N . Chứng minh rằng: Tứ giác BCMN là hình chữ nhật. Tính diện tích hình chữ nhật BCMN biết rằng BC = 8cm ; BH = 5 cm .
4) Đường thẳng ND cắt đoạn thẳng HC tại điểm P . Chứng minh tỉ số HP
PC không đổi khi điểm H di chuyển trên đường cao AD .
Cho hình chữ nhật ABCD( AB>BC). Từ B kẻ BH vuông góc với AC tại H. Lấy E sao cho H là trung điểm BE, lấy Q đối xứng với C qua H.
a) Tứ giác BCEQ là hình gì? Vì sao?
b)QE cắt DC tại M. Gọi N là hình chiếu của E trên AD, MN cắt DE tại o.CM tam giác OEM là tam giác cân
c) chứng minh rằng ADCE là hình thang cân
d) chứng minh 3 điểm N, M, H thẳng hàng
Cho tam giác ABC cân tại A , đường cao AH . Biết AB = 5cm; BC = 6cm. a) Tính diện tích ∆ABC . b) Gọi M là trung điểm của AB ; Q là điểm đối xứng với H qua M . Tứ giác AHBQ là hình gì? Vì sao? c) Gọi F là điểm đối xứng với A qua BC ; N là giao điểm của QF và BH . Tính độ dài đoạn thẳng MN . d) Vẽ HK vuông góc với CF tại K ; ∆ABC cần thêm điều kiện gì để ba điểm Q , H , K thẳng hàng? e) Gọi I là trung điểm của HK . Chứng minh FI vuông góc với BK
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo.Trên đoạn thẳng OB lấy điểm E sao cho OE>BE.Gọi F là điểm đối xứng với C qua E.Chứng minh OE=1/2 AF
Bài 3: Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là trung điểm của AB, AC. Qua B kẻ đường thẳng song song với AC cắt tia NM tạo D
a. CM tứ giác BDNC là HBH
b. Tứ giác BDNH là hình gì? Vì sao?
c. Gọi K là điểm đối xứng của H qua N. Qua N kẻ đường thẳng song song với HM cắt DK tại E. Chứng minh DE = 2EK
Cho ABC vuông tại A, đường trung tuyến AM.Gọi D là trung điểm của AB,E là điểm đối xứng với M qua D.
a)Chứng minh rằng: điểm E đối xứng với M qua AB.
b)Các tứ giác AEMC,AEBM là hình gì ? vì sao?
c)Cho BC=5cm, tính chu vi tứ giác AEBM.
d)Tam giác vuông ABC có điều kiện gì thì AEBM là hình vuông?
Cho ΔABC vuông tại A (AB < AC). Gọi I là trung điểm của BC. Qua I vẽ IM ⊥ AB tại M và IN ⊥ AC tại N.
a) Tứ giác AMIN là hình gì? Vì sao?
b) Gọi D là điểm đối xứng của I qua N. C/m: ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. C/m: \(\dfrac{DK}{DC}\) = \(\dfrac{1}{3}\).