Cho hình vuông ABCD có góc B = góc D= 90 độ và AB=AD. Trên cạnh BC lấy điểm M và trên cạnh CD lấy điểm N sao cho AM vuông góc BN. Gọi H là giao điểm thẳng AM và BN; gọi K là giao điểm của đoạn thẳng AN và BM. Chứng minh rằng AH.AM=AK.AN
cho hình vuông ABCD ,I là trung điểm của AB trên tia đối của tia CD lấy điểm M ,AM cát BC tại P và BM cát DI tại N
a, gọi E là giao điểm của AN và DC cm AE=AM
b, cm AB là phân giác của góc NAM
c, cm \(\frac{1}{AM^2}+\frac{1}{AP^2}\) không đổi khi M di chuyển trên tia đối của tia CD
d, cm \(\sqrt{AM.AD}\ge AC\)
1. Cho tam giác ABC cân tại A. Tia phân giác Ax của góc A cắt BC tại H. Trên AB lấy điểm M,trên tia đối của tia CA lấy điểm N sao cho BM=CN.
a. Nối MN cắt BC tại I. Chứng minh I là trung điểm của MN
b. Đường trung trực của MN cắt Ax tại O. Chứng minh OC vuông góc AC
c. Cm : 4/BC2 = 1/AB2 + 1/AC2
d. Biết AB= 6 cm,OB = 4,5 cm. Tính diện tích tam giác ABC
Cho hình vuông ABCD và 1 điểm M thuộc cạnh BC khác B và C . Gọi N là giao điểm của AM và CD.Chứng minh:
\(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
Cho△ABC cân tại A , đường cao AH . Lấy M ∈ cạnh AB ; N ∈ tia đối tia CA sao cho BM = NC . MN cắt BC tại I . Kẻ ND // AB ( D ∈ tia BC )
a) CMR : BMND là hình bình hành
b) Kẻ OI ⊥ MN ( O ∈ tia AH)
CMR : ΔOBM = ΔOCN
c) CMR : OC ⊥ AN
d) CMR : 1/AB2 + 1/OB2 = 4/BC2
Cho hình vuông ABCD và 1 điểm M thuộc cạnh BC. Gọi K là giao điểm của 2 đường thẳng AM và DC. Chứng minh 1 phần AB bình = 1 phần AM bình + 1 phần AK bình
Cho hcn ABCD. M thuộc tia đối của tia BC. N thuộc tia CD sao cho gocs MAN = 900
a)CMR: \(\dfrac{1}{AM^2}\) + \(\dfrac{1}{AN^2}\) = \(\dfrac{1}{BC^2}\)
b)Tìm vị trí của M và N để SAMN Min
Cho tam giác ABC vuông tại A (Ab > AC), đường cao AH(H thuộc BC), Trên tia đối của tia CB lấy điểm M sao cho HM=HA. Qua điểm M kẻ đường thẳng vuông góc với MB cắt đường thẳng AB tại N. Gọi P là trung điêmr của CN. Tia AP cắt đường thẳng BC tại Q. Chứng minh: a) Tam giác NCB đồng dạng tam giác MAB
Cho hình thang vuông ABCD và điểm M thuộc cạnh BC. Kéo dài AM cắt tia CD tại N. Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E.
a) Chứng minh: AE = AN
b) Chứng minh: 1/AB2 = 1/AM2 + 1/AN2