.Tổng tất cả các góc:
\(120^o+140^o+100^o=360^o\)
Đây đúng với định lí song song.Khi đó dễ dàng có được
\(AB//DE\)
.Tổng tất cả các góc:
\(120^o+140^o+100^o=360^o\)
Đây đúng với định lí song song.Khi đó dễ dàng có được
\(AB//DE\)
Cho tam giác ABC vuông tại B. Gọi D là trung điểm của cạnh AC. Trên tia BD lấy điểm E sao cho D là trung điểm của BE. (Vẽ hình ghi GT, KL vào bài làm)
a) Chứng minh △ADB = △CDE.
b) AB và CE có song song với nhau không vì sao?
c) Chứng minh BD =\(\dfrac{1}{2}\)AC
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc B cắt AC tại D trên cạnh BC lấy điểm E sao cho BE =BA vẽ AH vuông góc với BC tại H
a chứng minh tam giác ABD = tam giác EBD và AD = ED
b chứng minh AH song song với DE
Vẽ xOy nhọn và tia Oz là tia phân giác của xOy. Lấy điểm A thuộc tia Õ, điểm B thuộc tia Oy sao cho OA = OB.AB cắt Oz tại D.
a)Chứng minh ADO = BDO.
b)Kẻ DE vuông góc với Ox tại E; kẻ DF vuông góc với Oy tại F.
c)chứng minh EF song song với AB
Cho tam giác ABC nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA (Vẽ hình).
a) Chứng minh tam giác AMB bằng tam giác DMC và AB song song với CD.
b) Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh BE = CD.
c) Vẽ đường thẳng vuông góc với AB tại B cắt đoạn thẳng MD tại I. Trên tia MA lấy điểm F sao cho MF = MI. Chứng minh CF vuông góc với AB.
Cho △ABC có AB=AC. Gọi H là trung điểm của BC. Qua B vẽ đường thẳng song song với AH, đường thẳng này cắt đường thẳng AC tạo D.
1) Chứng minh △AHB = △AHC
2) Chứng minh AH vuông góc với BC và góc CBD= 90°
3) Vẽ AI vuông góc với BD ( I∈ BD ). Chứng minh IB=ID
a,Cho tam giác MNP có MN = MP gọi D là trung điểm của NP vẽ hình ghi giả thiết kết luận
b,Chứng minh tam giác MND = tam giác MPD
c,Trên tia đối của tia DM lấy điểm E sao cho DM = DE .Chứng minh MN song song với DE
d,Trên cạnh MN lấy điểm K .Trên cạnh EP lấy điểm Q sao cho MK = EQ .Chứng minh K ,Q ,D thẳng hàng
Giúp mik câu d vs ạ
Cho tam giác ABC. Vẽ AH vuông góc BC (H thuộc BC). Về phía ngoài tam giác ABC vẽ các tam giác ABD và ACE vuông cân tại A. Đường thẳng AH cắt DE tại M.
a) Chứng minh: BD^2+CE^2=2.(AB^2+AC^2)=2.BH^2+4.AH^2+2.CH^2
b) Vẽ DP vuông góc AH tại P, EQ vuông góc AH tại Q. Chứng minh AP = BH
c) Chứng minh M là trung điểm của DE
d) Đường thẳng qua D song song với AE và đường thẳng qua E song song với AD cắt nhau tại F. Chứng minh F, A, H thẳng hàng.
Cho tam giác ABC có AB=AC, M là trung điểm BC
a) Chứng minh: △ABM=△ACM
b) Trên tia đối của tia MA lấy D sao cho NM=MA. Chứng minh AC=BD
c) Trên nửa mặt phẳng bờ là AC không chứa điểm B vẽ tia Ax song song với BC, lấy I thuộc Ax sao cho AI=BC.Chứng minh D,C,I thẳng hàng
Bài 2: Cho hình vẽ , biết AB = CD, AD = CB
a) Chứng minh: △ABC = △CDA
b) Chứng minh: AB // CD và AD // BC