Bài 5: Cho hình thoi ABCD có O là giao điểm của hai đường chéo. Trên các cạnh AB, BC, CD, DA lấy theo thứ tự các điểm M, N, P, Q sao cho AM = CN = CP = QA. Chứng minh rằng:
a) Ba điểm M, O, P thẳng hàng và ba điểm N, O, Q thẳng hàng
b) Tứ giác MNPQ là hình chữ nhật.
Bài 6: Cho ΔAEB vuông ở A. Từ điểm C trên cạnh BE kẻ đường vuông góc với BE cắt tia đối của tia AB ở F, cắt AE ở D. Tia phân giác của góc E AB, CD lần lượt ở M và P. Tia phân giác của góc F cắt BC và DA lần lượt tại N và Q. Chứng minh rằng:
a) EM _|_ FN
b) MPNQ là hình thoi
Cho hình thoi ABCD có 2 đường chéo cắt nhau tại E. Từ A kẻ đường thẳng song song với BD và cắt BC tại M.Từ B kẻ đường thẳng song song vs AC cắt AM tại F. Gọi H là chân đường vuông góc kẻ từ A xuống MC.
a) tứ giác AEBF là hình gì ? Vì sao ?
b)Chứng minh B là trung điểm của MC
c) Chứng minh AH*MC=BD*AC
Cho hình vuông ABCD , E thuộc tia BC , F thuộc tia đối của tia DC sao cho BE=DF . Qua A kẻ đường thẳng vuông góc với tia EF cắt CD tại K . Qua E kẻ đường thẳng song song CD cắt AK tại I . FIEK là hình gì ?
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC
a) Chứng minh : Tứ giác EHMN là hình thang cân
b) Chứng minh: HE ⊥ HN
c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi
d) Chứng minh: AM, EN,BF và KC đồng quy
Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)
a) Chứng minh: Tứ giác AFCE là hình bình hành
b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng
c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành
d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?
giúp mình với mình đang cần gấp! Cảm ơn mọi người
Cho hình chữ nhật ABCD. Hai đường chéo AC và BD cắt nhau tại O. Gọi N và E lần lượt là trung điểm của AD và AB. Nối NE cắt AC ở I. Tia BI cắt tia ON ở F. Điểm M di độngtên đoạn BD. Kẻ MH vuông góc với BC ( H thuộc BC) và MK vuông góc với CD ( K thuộc CD)
a) Chứng minh tứ giác OAFD là hình thoi
b) Chứng minh BH.HC + CK.KD = BM.MD
c) Xác định vị trí điểm M trên BD để (BH.HC+CK.KD) lớn nhất ai lm nhanh,đúng 3 tick
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC
a) Chứng minh : Tứ giác EHMN là hình thang cân
b) Chứng minh: HE ⊥ HN
c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi
d) Chứng minh: AM, EN,BF và KC đồng quy
Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)
a) Chứng minh: Tứ giác AFCE là hình bình hành
b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng
c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành
d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?
Bài 1: Tứ giác ABCD, góc A =góc C=90 độ. Da cắt CB tại E, AB cắt CD tại F. Chứng minh rằng:
a) Góc E= góc F
b) Tia phân giác của góc E cắt AB tại G, cắt CD tại H. Tia phân giác của góc F cắt BC tại I,cắt AD tại K.
CMR: GKHI là hình thoi
Bài 2: Tam giác ABC đều. M thuộc BC, ME vuông góc với AB (E thuộc AB). ME vuông góc với AC (F thuộc AC). I thuộc AM: IA=IM. D thuộc BC: DB=DC. Chứng minh rằng:
a) Góc DIE, góc DIF=?
b) DEIF là hình thoi
Bài 3: Tam giác ABC, D thuộc AB, E thuộc AC: BD=CE. M thuộc DE: MD=ME. N thuộc BC: NB=NC. I thuộc BE: IB=IE. K thuộc CD: KC=KD. Chứng minh rằng:
a) MINK là hình?
b) IK cắt AB tại G, IK cắt AC tại H
CMR: Tam giác AGH cân
Cho hình thoi ABCD có góc ABC=60 độ, hai đường chéo cắt nhau tại O, E thuộc tia BC sao cho BE=4/3BC, AE cắt CD tại F, trên 2 đoạn thẳng AB,AD lần lượt lấy 2 điểm G và H sao cho CG song song FH.
1)CMR: BG.DH=3/4BC^2
2)Tính số đo góc GOH