Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) và AB < AC. Các tiếp tuyến tại B và C của (O) cắt nhau tại D. Qua D kẻ đường thẳng song song với AB, cắt BC và AC tại M và N.
a) Đường thẳng AD cắt đường tròn tại I, BI cắt DM tại K. Chứng minh K là trung điểm của DM
b) Trên đoạn thẳng BD lấy điểm P sao cho IP // DN, AP cắt BC tại Q. Gọi G là trung điểm DK. Chứng minh ba điểm Q, I, G thẳng hàng.
Cho đường tròn tâm O, đường kính AB, điểm I thay đổi trên đoạn OA ( khác A). Đường thẳng qua I vuông góc với AB cắt (O) tại C và D. Trên tia đối của tia BA lấy điểm S cố định. Đoạn CS cắt (O) tại M, gọi E là giao điểm của DM và AB.
a) Chứng minh tam giác SBC và tam giác SMA đồng dạng.
b) Chứng minh độ dài đoạn OE không phụ thuộc vào vị trí của điểm I.
cho tam giác ACD vuông tại A (AC<AD), đường cao AB. Đường tròn (O), đường kính AB cắt các cạnh AC và AD lần lượt tại M và N. Gọi I là trung điểm CD
1) Chứng minh tứ giác AMBN là hình chữ nhật
2)Chứng minh tứ giác CDNM nội tiếp
3)Gọi giao điểm của MN và CD là K, đường thẳng KA cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh KE.KA=KC.KD và EC⊥ED
4)Lấy F đối xứng với A qua I.Gọi Q là tâm đường tròn ngoại tiếp tứ giác CDNM. Chứng minh B,F,Q là 3 điểm thẳng hàng
Ai giải hộ bài này cái:
Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O).Qua A kẻ các tiếp tuyến AB,AC đến đường tròn (O);(B và C là tiếp điểm).Lấy D thuộc đường tròn (O) sao cho BD//AO.Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai E.gọi M là trung điểm của AC.
1)chứng minh BD vuông góc BC và ba điểm C;O;D thẳng hàng
2)Gọi K là trung điểm của DE;N là giao điểm của OK và BC.chứng minh ba điểm M;E;N thẳng hàng
3)Qua E kẻ đường thẳng song song với đường thẳng AB cắt các đường thẳng BC;BD lần lượt tại P và Q.Chứng minh PQ=PE
Cho tam giác AB cân tại A nội tiếp đường tròn tâm O. Gọi M;N là hai điểm lần lượt thuộc các đường thẳng AB và AC sao cho MN=AB=AC. Gọi P là giao điểm của MN và (O), Q là 1 điểm thuộc AP sao cho QM+QN=AP. Chứng minh rằng 4 điểm A;M;Q;N cùng thuộc một đường tròn.
Cho 2 đường tròn (O) và (O') cắt nhau tại hai điểm A, B phân biệt. Đường thẳng OA cắt (O), (O') lần lượt tại điểm thứ hai C, D. Đường thẳng O'A cắt (O), (O') lần lượt tại điểm thứ hai E, F.
1, Chứng minh 3 đường thẳng AB, CE và DF đồng quy tại một điểm I.
2, Chứng minh tứ giác BEIF nội tiếp được trong một đường tròn.
3, Cho PQ là tiếp tuyến chung của (O) và (O') [P ∈ (O), Q ∈ (O') ]
Chứng minh đường thẳng AB đi qua trung điểm của đoạn thẳng PQ
Cho đường tròn (O) đường kính AB. Gọi I là trung điểm của OA . Vẽ đường tron tâm I đi qua A, trên (I) lấy P bất kì, AP cắt (O) tại Q.
1. Chứng minh rằng các đường tròn (I) và (O) tiếp xúc nhau tại A.
2. Chứng minh IP // OQ. 3. Chứng minh rằng AP = PQ.
4. Xác định vị trí của P để tam giác AQB có diện tích lớn nhất.
Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC ( C ≠ A). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D,AD cắt (O) tại E ( E ≠ A)
a) Chứng minh góc BCE = góc DBE
b) Chứng minh bốn điểm O,B,D,C cùng thuộc một đường tròn
c) Qua C kẻ đường thẳng song song với BD cắt AB tại H. Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH
Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC ( C ≠ A). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D,AD cắt (O) tại E ( E ≠ A)
a) Chứng minh góc BCE = góc DBE
b) Chứng minh bốn điểm O,B,D,C cùng thuộc một đường tròn
c) Qua C kẻ đường thẳng song song với BD cắt AB tại H. Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH