Cho hình thang cân ABCD (AD//CB) có AB = 12cm, AC = 16cm, BC = 20cm
C/m: A, B, C, D thuộc một đường tròn, tính bán kính của đường tròn đó
Cho hình thang ABCD có A=D=90 độ và 2 đường chéo vuông góc với nhau. Gọi AB=m, CD=n. Tìm diện tích bé nhất của hình thang ABCD
Cho hình thang ABCD vuông tại A và D. Biết AB = 45cm, cạnh đáy CD = 10cm, BC = 37cm. Tính chiều cao và diện tích hình thang.
Hình thang ABCD có 2 đáy AB, CD với AB = 5. CD. P/g góc ABC cắt AD ở E và EA = 3ED. BE chia hình thang thành 2 tứ giác. Tính tỉ số diện tích 2 tam giác đó
Cho hình thang ABCD đáy lớn BC và BD = CD. Kéo dài AB về phía B lấy điểm M, gọi N là trung điểm của BC, MN cắt AC tại K. Chứng minh góc BDM = góc CDK.
Cho hình thang ABCD có \(\widehat{B}=\widehat{C}=90^O\). Hai đường chéo vuông góc với nhau tại H. Biết AB = \(3\sqrt{5}\) cm, HA = 3cm. Chứng minh:
a) HA:HB:HC:HD = 1:2:4:8
b) \(\dfrac{1}{AB^2}-\dfrac{1}{CD^2}=\dfrac{1}{HB^2}-\dfrac{1}{HC^2}\)
Cho hình thang ABCD có hai đường chéo AC và BD vuông góc với nhau tại I, hai cạnh đáy AB=1,78cm,DC = 4,17cm, cạnh bên AD = 2,6cm
a. Tính độ dài cạnh bên BC
b. Tính diện tích hình thang ABCD
cho hình thang ABCD có AC vuông góc với BD tại I hai cạnh đáy AB=1,78cm DC=4,147cm cạnh bên AD=2,6cm.
a, tính độ dài cạnh bên BC.
b, tính diện tích hình thang ABCD