Lời giải:
a) Vì $ABCD$ là hình thang cân nên $\widehat{D}=\widehat{C}$ và $AD=BC$
$\Rightarrow \frac{AD}{BC}=1$
Xét tam giác $ADE và $BCF$ có:
$\widehat{D}=\widehat{C}$ (cmt)
$\widehat{E}=\widehat{F}=90^0$
$\Rightarrow \triangle ADE\sim \triangle BCF$ (g.g)
$\Rightarrow \frac{DE}{CF}=\frac{AD}{BC}=1$
$\Rightarrow DE=CF$ (đpcm)
b) Vì $AB\parallel EF, EF\perp AE$ nên $AB\perp AE\Rightarrow \widehat{EAB}=90^0$
Tứ giác $ABFE$ có $\widehat{E}=\widehat{F}=\widehat{A}=90^0$ nên $ABFE$ là hình chữ nhật (đpcm)