- Đề bài đúng nhé bạn:
Xét tam giác MDC có:
AB//CD (gt)
=>\(\dfrac{MA}{MD}\)=\(\dfrac{AB}{DC}\)(định lí Ta-let)
=>\(\dfrac{AB}{2,5}=\dfrac{3}{5}\)
=>AB=\(\dfrac{3}{5}.2,5\)=1,5(cm)
- Đề bài đúng nhé bạn:
Xét tam giác MDC có:
AB//CD (gt)
=>\(\dfrac{MA}{MD}\)=\(\dfrac{AB}{DC}\)(định lí Ta-let)
=>\(\dfrac{AB}{2,5}=\dfrac{3}{5}\)
=>AB=\(\dfrac{3}{5}.2,5\)=1,5(cm)
Cho hình thang ABCD đáy AB và CD (AB<CD) gọi O là giao điểm hai đường chéo m là giao điểm da và CB đường thẳng MO cắt AB và CD thứ tự ở N và K
a, cm AN. KC = BN . KD
b, cm N và K là trung điểm của AB và CD.
Cho hình thang ABCD (AB//CD) có AB=5cm;CD=15cm và AD=10cm.Hai cạnh bên kéo dài cắt nhau tại O.Chứng minh tam giác AOB cân(gợi ý đặt OA=x).
Cho hình thang ABCD có AB// CD và AB < CD. Gọi E là giao điểm của AC ,BC biết AB = 2 cm, BC = 8 cm trên cạnh AD lấy điểm K sao cho AK = 1 cm, AD = 5 cm Chứng minh KO//DC
: Cho hình thang ABCD (AB < CD và AB // CD). Vẽ qua A đường thẳng AK song song với BC (K DC) và AK cắt BD tại E, vẽ qua B đường thẳng BI song song với AD (I CD) cắt AC tại F.
a) Chứng minh rằng: EF // AB
b) Chứng minh rằng: AB2 = CD.EF
Cho hình thang ABCD có AB//CD;AB=2cm;CD=5cm.AC cắt BD tại O.
a)Viết hệ quả định lý Talet cho tam giác OCD.
b)Tính OA/OC;OD/OB;AO/AC
c)Lấy M thuộc BC sao cho BM=2/7 BC.Cminh OM//DC;tính OM
d)Tia MO cắt AD tại I.Tính OI.
MỌI NGƯỜI GIÚP MÌNH VỚI ẠAA
Cho hình thang ABCD( AB//CD; AB<CD) . Hai đường chéo cắt
nhau tại O.
a) CMR: OA.OD=OB.OC
b) Đường thẳng đi qua O mà song song với CD cắt AD và BC lần lượt
tại M và N. CMR: OM=ON.
c) AD cắt BC tại E. EO cắt AB và CD lần lượt tại P và Q. CMR: P là
trung điểm của AB; Q là trung điểm của CD;
mg giúp mình câu c với
cho hình thang ABCD (đáy nhỏ AB). Hai cạnh bên cắt nhau tại S . Hai đường chéo cắt nhau tại O . Gọi M và N lần lượt là trung điểm AB, DC . Chứng minh: a) S,M,N thẳng hàng .b) O thuộc SM
Cho hình thang ABCD có hai đấy là AB và CD, M là trung điểm của AB, O là giao điểm của AD và BC. OM cắt CD tại N. Chứng minh N là trung điểm của CD