Cho hình thang ABCD có AB // CD , ABCD . Kẻ AH vuông góc với CD tại H. GỌi M là trung điểm BC, E và F lần lượt là trung điểm của AM và DM; À cắt DE tại K. Lấy N đối xứng với A qua M. C/m :a ) DN=AB+CD b) MK/CH= 2/3
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Giúp mk với ạ.
Cho hình chữ nhật ABCD có AB=2.AD. Gọi E; I lần lượt là trung điểm của AB và CD. Nối D và E. Vẽ tia Dx sao cho Dx vuông góc với DE, và Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểmcủa DK và EM.
Tính số đo \(\widehat{DBK}\) ?
Cho hình thang ABCD có đg cao AH = 30 cm và đoạn CD = 50 cm. M ở trên AB. Lấy E và F lần lượt là trung điểm của AC và BD. Lấy H đối xứng với E qua M; K đối xứng với F qua M. Tính HK
Cho hình thang ABCD có đg cao AH = 30 cm và đoạn CD = 50 cm. M ở trên AB. Lấy E và F lần lượt là trung điểm của AC và BD. Lấy P đối xứng với E qua M; K đối xứng với F qua Q. Tính PQ
Cho hình thang ABCD có đg cao AH = 30 cm và đoạn CD = 50 cm. M ở trên AB. Lấy E và F lần lượt là trung điểm của AC và BD. Lấy P đối xứng với E qua M; Q đối xứng với F qua M. Tính PQ
bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC. 2) tứ giác EFQP là hình gì ? 3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm 4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)
bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN. 2) AM = MN = NC . 3) 2EN = DM + BC .4)\(S_{ABC}=3S_{AMB}\)
bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC. 1) C/m E ,F ,I thẳng hàng . 2) tính \(S_{ABCD}\) . 3) so sánh \(S_{ADC}\) và\(2S_{ABC}\)
bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng
2) tính \(EF\le\frac{AB+CD}{2}\)
3) tứ giác ABCD phải có điều kiện gì thì EF = \(\frac{AB+CD}{2}\)