a)
Có $IM//AB \to \frac{IK}{AB}=\frac{DK}{DB};\frac{LM}{AB}=\frac{CM}{CB}^{[1]}$
Có $KM//DC \to \frac {BK}{BD}=\frac{BM}{BC} \to\frac {BD-BK}{BD}=\frac{BC-BM}{BC}$ $\to \frac{DK}{BD}=\frac {MC}{CB} ^{[2]}$
Từ $[1][2] \to IK=LM[1][2]$
b)
Có $EF//AB \to \frac{EO}{AB}=\frac{DO}{DB};\frac{OF}{AB}=\frac{CF}{CB} ^{[3]}$
Có $OF//DC \to \frac {OB}{BD}=\frac{BF}{BC} \to\frac {BD-OB}{BD}=\frac{BC-BF}{BC} \to \frac{DO}{BD}=\frac {FC}{CB} ^{[4]}$
Từ $[3][4] \to EO=OF$