Cho hình thang ABCD ( AB//CD) có CD = AD + BC. Gọi K là
giao điểm của tia phân giác góc A với đáy CD. Chứng minh:
a) AD = DK
b) Tam giác BKC cân tại C
c) BK là tia phân giác góc B
Cho hình thang cân ABCD (A // CD , AB < CD). Gọi MNPQ lần lượt là trung điểm của CD, AB, DB, CA
a, Chứng minh MN là tia phân giác của góc PNQ
b, Tính số đo các góc của tứ giác MPNQ biết các góc nhọn của hình thang cân ABCD là góc C = góc B =50°
c, Hình thang ABCD thỏa mãn điều kiện gì thì tứ giác MPNQ là hình vuông
Giải giúp mình với gấp lắm ạ mai mình cần pl🥺
cho tam giác ABC vuông tại A có góc B= 60 độ. gọi tia Bx là tia phân giác của góc B cắt AC tại E. vẽ tia Cy vuông góc BC sao cho Cy cắt Bx tại F.
a) CM: tam giác CEF đều
b)vẽ CD vuông góc với EF. CM: tứ giác ABCD là hình thang cân.
Cho tam giác ABCD cân tại A có BD, CE là tia phân giác góc B và C. Chứng minh BCDE là hình thang cân.
Bài 1: Cho hình thang cân ABCD ( AB//CD) có D^=700
a) Tính số đo các góc B^,C^,A^
b) Kẻ đường cao AH và BK của hình thang. Chứng minh DH = CK
Bài 2: Cho tam giác ABC cân tại A. kẻ phân giác BE, CF của các góc B và C.
a) Chứng minh tam giác AEF cân
b) Chứng minh △BFC = △CEB
c) Chứng minh BFEC là hình thang cân
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
giúp mik vs ạ mik cho 5 sao
Cho hình thang cân ABCD có AB // CD và AB < CD. Kẻ đường cao AH, BK của hình thang ABCD (H, K thuộc CD).
1) Chứng minh tam giác ADH bằng tam giác BCK.
2) Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3) Giả sử BK=AB+CD/2. Tính góc tạo bởi hai đường chéo của hình thang.
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C ?
Cho tứ giác ABCD \(AB=BC=AD\) , và\(\widehat{DAB}\) + \(\widehat{BCD}\) = \(^{^{ }180^o}\)
a) Chứng minh rằng DB là tia phân giác của góc \(\widehat{ADC}\) ?
b) Chứng minh rằng tứ giác ABCD là hình thang cân ?
hình thang cân ABCD (AB//CD) có góc C=60 độ, DB là tia phân giác của góc D, AB =4cm
a) chứng minh rằng BD vuông góc với BC
b) tính chu vi hình thang