1: Xét hình thang AECD có
góc ADC=góc ECD
=>AECD là hình thang cân
2: góc DAE=góc AEC
=>góc DBE>góc DAE
1: Xét hình thang AECD có
góc ADC=góc ECD
=>AECD là hình thang cân
2: góc DAE=góc AEC
=>góc DBE>góc DAE
hình thang cân ABCD (AB//CD) có góc C=60 độ, DB là tia phân giác của góc D, AB =4cm
a) chứng minh rằng BD vuông góc với BC
b) tính chu vi hình thang
Cho hình thang cân abcd, ab là đáy nhỏ , BH vuông góc với CD H thuộc CD, biết 2 BH = AB +CD. Vẽ đường thẳng BE\\AC(E thuộc CD)
a) C/M : Tam giác DBE cân
b) C/M BD vuông góc với AC
Mấy bạn giúp mình với ;~:
Bài 1: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 2: Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.
a) Chứng minh tam giác OMN và OPQ cân tại O.
b) Chứng minh tứ giác MNPQ là hình thang cân.
c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.
Bài 1: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 2: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 3: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
Bài 1: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 2: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 3: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
Cho hình thang cân ABCD (A // CD , AB < CD). Gọi MNPQ lần lượt là trung điểm của CD, AB, DB, CA
a, Chứng minh MN là tia phân giác của góc PNQ
b, Tính số đo các góc của tứ giác MPNQ biết các góc nhọn của hình thang cân ABCD là góc C = góc B =50°
c, Hình thang ABCD thỏa mãn điều kiện gì thì tứ giác MPNQ là hình vuông
Giải giúp mình với gấp lắm ạ mai mình cần pl🥺
Cho hình thang ABCD cân (AB//CD) có DB là tia phân giác góc D,DB +BC ,B+AB= 4cm .tính chu vi hình thang
Cho hình thang cân ABCD ( AB // CD ) . Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC tại E . Chứng minh : a ) ∆ACB = ∆ EBC b ) ∆BDE là tam giác cân c ) Góc ACD = góc BDC
Bài 1: Cho hình thang ABCD (AB // CD) có . Hai tia phân giác của góc C và D cắt nhau tại điểm E. Chứng minh rằng ba điểm A, E, B thẳng hàng.
Cho hình thang cân ABCD (AB//CD,AB<CD) có AD=BC . c/m:
a)AB=BC
b)DB là phân giác góc ADC