Cho hình thang ABCD (AB // CD), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng d song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: a) OM = ON; b) 1/AB + 1/CD + 2/MN
Cho hình thang ABCD (AB//CD). M∈AD, N∈BC sao cho AM/MD =CN/NB . MN cắt BD, AC lần lượt tại E và F. Qua M kẻ đường thẳng song song với AC cắt DC tại H. AC cắt BD tại O, HO cắt MN tại I. Chứng minh:
a) HN//BD.
b) IE=IF, ME=MF.
Cho hình thang ABCD (ab//cd) O là giao điểm của 2 đường chéo AC và BD . ĐUowngf thẳng vẽ qua O // AD cắt AD và BC theo thứ tự tại M và N . CMR : 1/AB + 1/CD = 2/MN
Cho hình thang ABCD(AB//CD,AB<CD).Có O là giao điểm của 2 đường chéo.Qua O kẻ 2 đường thẳng song song với 2 đáy cắt AD tại M,cắt BC tại N.
a) So sánh các tỉ số OM/CD và AO/AC,ON/CD và OB/BD.
b) Chứng minh OM=ON.
c) Tính MN biết AB=4cm CD=6cm.
d) Gọi E là giao điểm của 2 đường thẳng AD và BC.Chứng minh E,O và trung điểm của BC thẳng hàng.
e) Qua B kẻ đường thẳng song song với AD cắt AC tại K. Chứng minh OA mũ 2 = OK*OC
cho hình thang ABCD( AB//CD), hai đường chéo cắt nhau tại O. qua O kẻ đường thẳng //AB cắt AD và BC lần lượt tại M và N. CM OM=ON
Cho hình thang ABCD (AB // CD). P thuộc AC qua P kẻ đường thẳng song song với AB cắt AD, BC tại M, N. Biết AM = 10, BN = 11, PC = 35. Tính AP và NC
1.Cho tam giác vuông cân ABCcos góc C= 90 độ. Từ C kẻ một tia vuông góc với trung tuyền AM cắt AB ở D. Hãy tính tỉ số ED/DA.
2. cho điểm E thuộc cạnh AC của tam giác ABC. Qua B kẻ một đường thẳng I. Đường thẳng qua E và song song với BC cắt I tại N. Đường thẳng qua E và song song với AB cắt I tại M. Cm AN//CM
3.Cho hình thang ABCD có BC//AD . Trên AC kéo dài lấy 1 điểm P tùy ý. Dường thẳng qua P và trung điểm của BC cắt AB tại M và đường thẳng qua P và trung điểm của AD cắt CD tại N . CMR MN//AD
4. Tứ giác ABCD có M, N lần lượt là trung điểm của các đường chéo AC và BD. Gọi G là trọng tâm Tam giác ABC, nối GC cắt MN tại O. Chứng minh OC=3OG
5. Cho hình thang ABCD ) AB//CD) với AB=a; CD=b. Gọi I là giao điểm của hai đương chéo. Đường thẳng qua I và song song AB cắt hai cạnh bên tại E và F. CMR: EF=\(\frac{2ab}{a-b}\)
6. Hình bình hành ABCD. Gọi M là một điểm trên đường chéo AC. VẼ ME vuông góc với AB và MF vuông góc với AD. CMR\(\frac{ME}{MF}\)=\(\frac{AD}{AB}\)
Cho hình thang ABCD (AB // CD, AB < CD). Gọi trung điểm của đường chéo BD là M. Qua M kẻ đường thẳng //với DC cắt AC tại N
a.N là trung điểm của AC
b.\(MN=\frac{CD-AB}{2}\)