cho hình thang cân abcd (ab//cd , ab<cd )gọi m,n,p,q lần lượt là trung điểm cấc đoạn ad , bd , ac ,bc chứng minh.
a) m,n,p,q thẳng hàng
b) chứng minh abpn là hình thang cân
c) tìm một hệ thức liên kết giữa ab và cd để abpn là hình chữ nhật
Cho hình thang cân ABCD ( AB//CD, AB < CD) . Gọi M, N, P, Q lần lượt là các trung điểm của đoạn thẳng AD, BD, AC, BC.
a, Chứng minh bốn điểm M, N, P, Q thẳng hàng.
b, Chứng minh tứ giác ABPN là hình thang cân.
c, Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
Bài 1: Cho hình thang cân ABCD (AB//CD, AB<CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC,BC.
a) Chứng minh bốn điểm M, N, P, Q thẳng hàng
b) Chứng minh tứ giác ABPN là hình thang
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật
Cho hình chữ nhật ABCD ( AB AD > ), gọi M là trung điểm cạnh AB . Từ M kẻ MN ^ CD tại N . 1) Chứng minh tứ giác AMND là hình chữ nhật. 2) Gọi K là điểm đối xứng của D qua M . a) Tứ giác AKBD là hình gì? Giải thích? b) Chứng minh B là trung điểm của đoạn thẳng KC
Cho hình thang vuông ABCD(AB//CD,góc D=90 độ),M và N lần lượt là trung điểm của AD và BC:
a/Biết AB=10cm,CD=16cm.Tính độ dài MN?
b/Từ N vẽ đường thẳng song song với AD cắt CD tại K.Tứ giác DMNK là hình gì
Bài 4. Cho hình chữ nhật ABCD (AB = 2AD), gọi M là trung điểm của AB. Từ M kẻ MN vuông góc CD tại N
a) Chứng minh tứ giác AMND là hình chữ nhật
b) Gọi K là điểm đối xứng với D qua M. Chứng minh B là trung điểm của KC
c) Gọi I là điểm giao của BD và CM. Biết AB = 2AD. Chứng minh NI = 1/3 BD
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Lấy điểm M thuộc đoạn thẳng OC. Gọi E, F lần lượt là hình chiếu của điểm M trên đường thẳng AB, AD. Chứng minh:
a) Tứ giác AEMF là hình chữ nhật.
b) BD // EF.
+ vẽ hình nhé
Cho tứ giác ABCD . Gọi E, F,G,H lần lược là trung điểm của AB, BC, CD, AD Bé vịt nhỏ A) chứng minh rằng : tứ giác EFGH là hình bình hành b) cho AC vuông góc với BD . Chứng minh EFGH là hình chữ nhật . ( Vẽ hình , ghi giả thiết , kết luận đc 0.5 ₫