Xét hình thang ABCD có EF//AB//CD
nên AE/AD=BF/BC(1)
Xét ΔADC có OE//DC
nên OE/DC=AE/AD(2)
Xét ΔBDC có OF//DC
nên OF/DC=BF/BC(3)
Từ (1), (2) và (3) suy ra OE=OF
Xét hình thang ABCD có EF//AB//CD
nên AE/AD=BF/BC(1)
Xét ΔADC có OE//DC
nên OE/DC=AE/AD(2)
Xét ΔBDC có OF//DC
nên OF/DC=BF/BC(3)
Từ (1), (2) và (3) suy ra OE=OF
Cho hình thang ABCD (AB//CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh bên AD, BC theo thứ tự tại E và F (h.26)
Chứng minh rằng OE = OF
1. Cho hình thang ABCD (AB//CD). Đường thẳng a song song với DC, cắt các cạnh AD và BC theo thứ tự tại M và N.
Chứng minh rằng: a) \(\dfrac{AM}{MD}=\dfrac{BN}{NC};\) b)\(\dfrac{AM}{AD}=\dfrac{BN}{BC};\) c)\(\dfrac{DM}{DA}=\dfrac{CN}{CB}.\)
2. Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh bên AD, BC theo thứ tự tại E và F (h.24).
So sánh OE và OF.
Bài 16: Cho hình thang ABCD ( AB // CD), đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song
song với AB cắt các cạnh bên AD, BC lần lượt tại M, N.
1. Chứng minh: OM = ON 2. Chứng minh:
AM CN =1
AD CB
Cho hình thang ABCD, đáy nhỏ CD. Từ D kẻ đường thẳng song song với BC, cắt AC tại M, cắt AB tại K. Từ C kẻ đường thẳng song với AD, cắt AB tại F. Qua F kẻ đường thẳng song song với AC cắt BC tại P. Chứng minh rằng:
a) Các tứ giác AFCD, DCBK là hình bình hành.
b) MP // AB.
c) Ba đường thẳng MP, CF, DB đồng qui.
Cho hình thang ABCD (AB //CD)
Đường thẳng a song song với DC, cắt các cạnh AD và BC theo thứ tự tại E và F
Chứng minh rằng :
a) \(\dfrac{AE}{ED}=\dfrac{BF}{FC}\)
b) \(\dfrac{AE}{AD}=\dfrac{BF}{BC}\)
c) \(\dfrac{DE}{DA}=\dfrac{CF}{CB}\)
Cho tam giác ABC(AB<AC), AD là phân giác trong của góc A. Qua trung điểm E của cạnh BC, vẽ đường thẳng song song với AD, cắt cạnh AC tại F, cắt đường thẳng AB tại G. Chứng minh CF=BG