Bạn tham khảo lời giải tại đây:
Bạn tham khảo lời giải tại đây:
Cho hình thang ABCD (AB // CD, AB < CD).Hai đường chéo AC và BD cắt nhau tại O. Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) EF // CD
b) AB2 = CD.EF
Cho hình thang ABCD (AB // CD, AB < CD). Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) DK = CI
b) EF // CD
c) AB2 = CD.EF
Cho tứ giác ABCD, AC và BD cắt nhau tại O. Đường thẳng song song với BC cắt AB ở E; đường thẳng song song với CD qua O cắt AD tại F.
a. Chứng minh: EF//BD.
*b. Từ O kẻ các đường thẳng song song với AB,AD cắt AD,CD tại G và H. Chứng minh: CG.DH=BG.CH.
giải hộ vs =(((
1,Cho tam giác ABC nhọn với H là trực tâm. Gọi M là trung điểm của BC. Các đường trung trực của AC và BC cắt nhau tại O. Chứng minh: AH = 2OM
2, Cho hình thang ABCD có đáy lớn là CD. Qua A kẻ đường thẳng AK song song BC ( K thuộc CD ). Qua điểm B kẻ đường thẳng BI song song AD ( I thuộc CD ). BI cắt AC tại F; AK cắt BD tại E. Chứng minh rằng:
a, EF song song AB
b, AB2 = CD.EF
cho hình thang ABCD (AB song song với CD) đường thẳng đi qua A song song với BC cắt BD ở I, đường thẳng qua B song song AD cắt AC ở K. a) Chứng minh IK song song với DC b) AB^2=IK.DC
Cho hình thang ABCD (AB//CD). Gọi I là giao điểm của hai đường chéo AC và BD. Vẽ qua I một đường thẳng song song với AB cắt AD và BC lần lượt tại E và F. CMR:
a. IE=IF
b. \(\dfrac{2}{EF}\)=\(\dfrac{1}{AB}\)+\(\dfrac{1}{CD}\)
Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
Chủ đề: Học toán lớp 7
Cho hình thang ABCD có đáy lớn CD. Qua A vẽ đường thẳng song song với BC cắt DC tại K. Qua B vẽ đường thẳng song song với AD cắt DC tại I..BI cắt AC tại F, AK cắt BD tại E. Chứng minh rằng:
a)Tam giác AFB đồng dạng với tam giác CFI
b) AE. KD = AB. EK
c) AB2 = CD. EF
Giúp e ý c với
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .