Cho hình hộp đứng ABCD.A'B'C'D' có đáy là hình vuông. Tam giác A'AC vuông cân A'C=a. Tính thể tích của khối tứ diện ABB'C' và khoảng cách từ điểm A đến mặt phẳng (BCD') theo a.
Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật, AB=a, AD=\(a\sqrt{3}\). Hình chiếu vuông góc của điểm \(A_1\) lên mặt phẳng (ABCD) trung với giao điểm của AC và BD. Góc giữa 2 mặt phẳng \(\left(ADD_1A_1\right)\) và (ABCD) bằng 60 độ. Tính thể tích của khối lăng trụ đã cho và khoảng cách từ điểm \(B_1\) đến mặt phẳng (\(A_1BD\)) theo a
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB=a,BC=2a\sqrt{a}\). Hình chiếu của S lên mặt phẳng đáy là trọng tâm của tam giác ABC. Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60 độ. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với (ABCD), SA = a
a) Tính khoảng cách từ C đến mặt phẳng (SBD)
b) Tính khoảng cách từ D đến mặt phẳng (SBC)
c) Tính khoảng cách từ O đến mặt phẳng (SCD)
d) Tính khoảng cách giữa AB và SC
e) Tính khoảng cách giữa BD và SC
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B
AB=a, AA'=2a, A'C=3a. Gọi M là trung điểm của đoạn A'C'; I là giao điểm của AM và A'C.
Tính theo a thể tích của khối tứ diện IABC và khoảng cách từ điểm A đến mặt phẳng (IBC)
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B
AB=a, AA'=2a, A'C=3a. Gọi M là trung điểm của đoạn A'C'; I là giao điểm của AM và A'C.
Tính theo a thể tích của khối tứ diện IABC và khoảng cách từ điểm A đến mặt phẳng (IBC)
Cho hình lăng trụ ABC.A'B'C', đều có cạnh bằng a, AA' = a và đỉnh cách đều A, B, C. Gọi lần lượt là trung điểm của cạnh BC và A'B. Tính theo a thể tích khối lăng trụ ABC.A'B'C' và khoảng cách từ C đến mặt phẳng (AMN).
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật. AB=2a, AD= a√3 , SA vuông góc với đáy (ABCD). Gọi M là trung điểm CD. Góc giữa SM và đáy (ABCD) là 60 độ. Tính khoảng cách giữa hai đường thẳng AM và SB.
Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD có AB=3a AD =2a , SA vuông góc ( ABCD) . Gọi M là trung điểm của AD. Khoảng cách giữa 2 đường thẳng CM và SA là: