cho hình hộp abcd,a'b'c'd' có tâm O. Đặt vectơ Ab= vectơ a, vecto BC= vectơ b. M là điểm xác định sao Om=1/2.(a-b)( ở dạng vecto). Tìm M?
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi O và O' theo thứ tự là tâm của hai hình vuông ABCD và A'B'C'D'
a) Hãy biểu diễn các vectơ \(\overrightarrow{AO},\overrightarrow{AO'}\) theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho
b) Chứng minh rằng :
\(\overrightarrow{AD}+\overrightarrow{D'C}+\overrightarrow{D'A'}=\overrightarrow{AB}\)
Cho hình hộp ABCD.A’B’C’D’. Xét các điểm M và N lần lượt thuộc các đường thẳng A’C và C’D sao cho vecto MA'= -3 vecto MC , vecto NC'= - vecto ND . Đặt vectoBA = A, vecto BB' =b , vecto BC= c. . Hãy biểu thị các vectơ BM và BN qua các vectơ a,b,c? CM: MN// BD'
Cho hình hộp ABCD.EFGH. Gọi K là giao điểm của AH và DE, I là giao điểm của BH và DF. Chứng minh 3 vectơ \(\overrightarrow{AC},\overrightarrow{KI,}\overrightarrow{FG}\) đồng phẳng ?
Cho tứ diện ABCD đều. Gọi G là trọng tâm của tam giác BCD.
a) Chứng minh AG\(\perp\) CD
b) Gọi M là trung điểm của CD . Tính góc giữa AC và BM .
Cho tứ diện ABCD đều. Gọi G là trọng tâm của tam giác BCD.
a) Chứng minh AG\(\perp\) CD
b) Gọi M là trung điểm của CD . Tính góc giữa AC và BM .
Cho hình hộp ABCD.A'B'C'D' có P và R lần lượt là trung điểm các cạnh AB và A'D'. Gọi P', Q,Q',R' lần lượt là tâm đối xứng của các hình bình hành ABCD, CDD'C', A'B'C'D', ADD'A'
a) Chứng minh rằng \(\overrightarrow{PP'}+\overrightarrow{QQ'}+\overrightarrow{RR'}=\overrightarrow{O}\)
b) Chứng minh hai tam giác PQR và P'Q'R' có trọng tâm trùng nhau
Cho tứ diện ABCD. Gọi M, N, H, K, I, J lần lượt là trung điểm của các cạnh : AB, CD, BC, AD, AC, BD
a) C/M:MN, HK, IJ đồng quy tại G ( G là trọng tâm tứ diện ABCD)
B)CMR: GA + GB+GC+GD=0 (có dấu vecto nha! )
C) CMR: FA +FB+FC+FD =4FG
D)CMR: AB+AC+AD =4AG