Bài 5: Cho ΔABC vuông tại A có AB = 3cm, BC = 5cm.
a) Tính độ dài đoạn AC.
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ΔADC = ΔABC.
c) Gọi M là trung điểm của CD. Qua D vẽ đường thẳng song song với BC cắt BM tại E.
Chứng minh ΔCDE cân tại D.
d) Gọi I là giao điểm của AC và BE. Chứng minh BC + BD > 6.IM.
Cho tam giác ABC vuông tại A và góc ABC = 60 độ.
a) So sánh AB và AC.
b) Trên BC lấy D sao cho BD=AB. Qua D dựng đường thẳng vuông góc với BC cắt tia đối của tia AB tại E.
C/m tam giác ABC = tam giác DBE.
c) Gọi H là giao điểm của ED và ÁC. C/m tia BH là tia phân giác của góc ABC.
d) Qua B dựng đường thẳng vuông góc với AB cắt đường thẳng ED tại K.
C/m tam giác HBK đều.
mọi người vẽ giúp mình hình với
Cho tam giác ABC vuông tại A có AB= 6cm BC= 10cm
a, tính độ dài AC và so sánh các góc của tam giác ABC
b, trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD .chứng minh tam giác BCD cân
c, gọi K là trung điểm của cạnh BC đường thẳng DK cắt AC tại M .tính MC
c) đường trung trực D của đường thẳng AC cắt đường thẳng DC tại Q . chứng minh 3 điểm B M Q thẳng hàng
Cho tam giác ABC vuông tại A có AB= 6cm BC= 10cm
a, tính độ dài AC và so sánh các góc của tam giác ABC
b, trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD chứng minh tam giác BCD cân
c, gọi K là trung điểm của cạnh BC đường thẳng DK cắt AC tại M .tính MC
c) đường trung trực D của đường thẳng AC cắt đường thẳng DC tại Q chứng minh 3 điểm B M Q thẳng hàng
Cho tam giác ABC cân tại A; A<90 độ.Trên tia đối của tia AB lấy điểm D sao cho AB=AD. Kẻ đường cao AF của tam giác ACD; AC cắt BF tại G.
a)CMR: F là trung điểm của DC và G là trọng tâm của tam giác BDC. Chứng minh BD=6AG
b)Kẻ CH vuông góc với BD (H thuộc BD);DK vuông góc với CA(K thuộc CA). Chứng minh các đường thẳng AF,CH,DK đồng quy
c)KF cắt AD tại I. Biết góc BAC=45 độ. So sánh độ dài các đoạn thẳng CH,HI và ID
Cho tam giác ABC vuông tại A có góc B = 60 độ, đường cao AH. Trên đoạn thẳng HC lấy điểm M sao cho HM=HB.
a) Chứng minh AB = AM
b) Kẻ MK ⊥ AC ( K ∈ AC ). Chứng minh MA là tia phân giác của góc HMK
c) Chứng minh AM là đường trung trực của đoạn thẳng HK
d) Đường thẳng vuông góc với BC tại B cắt tia CA tại E. Gọi Q là điểm bất kì thuộc đoạn thẳng AB, trên tia đối của tia AB lấy điểm I sao cho AI = BQ. Đường thẳng vuông góc với AB tại Q cắt BE tại P. Chứng minh PI ⊥ IC
Nhanh giúp mình với ạ, mai mình thi rồi
Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn
a) Cho M,H ∈AC,N,K∈BC sao cho AM=BN, AH=BK
CMR: AB,MN,KH đồng quy
Cho tam giác ABC với AC < AB. Trên tia đối của BC lấy điểm D saoc ho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Vẽ các đoạn thẳng AD, AE
a) Hãy so sánh góc ADC và góc AEB
b) Hãy so sánh các đoạn AD và AE
Cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BD = BA, từ D vẽ đường thẳng vuông góc BC cắt AC tại E và tia BA tại F.
a) Chứng minh: ∆ABE = ∆DBE và so sánh đoạn EF với đoạn ED.
b) Chứng minh: ∆ CEF cân
c) Gọi M là trung điểm CF. Chứng minh: B, E, M thẳng hàng.
Vẽ hình giúp mình luôn nha mng :33