Cho hình chữ nhật ABCD, O là giao điểm 2 đường chéo, Lấy E thuộc cạnh CD, EO cắt AB tại F. Đường thẳng qua E song song với AC cắt AD tại M, đường thẳng qua E song song với BD cắt BC tại N.
a) Chứng minh tứ giác BEDF là hình bình hành
b) Chứng minh tứ giác MÈN là hình bình hành
c) Chứng minh ba điểm M , O, N thẳng hàng
d) Gọi I là giao điểm của NF và BD. Chứng minh I là trung điểm NF
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .
cho hình thoi ABCD (BD<AC). gọi o là giao điểm của AC và BD. I là điểm bất kỳ trên AO. đường thẳng qua I song song với AB cắt AD và BC lần lượt tại M và P. đường thẳng qua I song song với AD cắt AB và CD lần lượt tại N và Q.
a) chứng minh tứ giác AMIN và CPIQ là hình thoi
b) tính diện tích tam giác ABC nếu biết AB=5cm và BD=6cm
c)tứ giác MNPQ là hình gì? tìm vị trí của I đề MNPQ là hình chữ nhật
mong mọi người giúp em ạaa><
Cho ABC. AD, BE, CF là 3 đường trung tuyến. Đường thẳng qua E song song với AB và đường thẳng qua F song song với BE cắt nhau tại G. Chứng minh:
a) Tứ giác AFEG là hình bình hành
b) 3 điểm D; E; G thẳng hàng
c) CG = AD
cho hình chữ nhật ABCD,O là giao điểm hai đường chéo,M thuộc CD và N thuộc AB sao cho DM=BN
a)Cm:M,O,N thẳng hàng
b)Qua M kẻ đường thẳng song song với AC cắt AD ở E,qua N kẻ đường thẳng song song với AC cắt BC ở F.cm:EN=FM
c)Tìm vị trí của M,N để tứ giác ANCM là hình thoi
d)BD cắt NF tại I.cm:I là trung điểm của NF
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O, trên đoạn OB lấy điểm E bất kỳ (khác O,B), trên tia AE lấy điểm F sao cho E là trung điểm AF. Kẻ FM vuông góc với BC (M∈BC), kẻ FN vuông góc với đường thẳng DC (N thuộc đường thẳng DC).
a)Tứ giác CMFN là hình gì, vì sao?
b)Chứng minh CF // BD
c)Chứng minh ba điểm E,M,N thẳng hàng
Cho hình bình hành ABCD, trên các cạnh AB,CD lần lượt lấy các điểm M,N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN tại E,F. Chứng minh rằng:
a, E và F đối xứng qua AB
b, MEBF là hình thoi
c, Hình bình hành ABCD phải có điều kiện gì để BCNE là hình thang cân?
Cho hình vuông ABCD. Gọi O là giao điểm hai đường chéo. Từ B kẻ đường thẳng song song với AC, cắt DC kéo dài tại E. Gọi F là trung điểm BE. Chứng minh:a, Tam giác BDE vuông cân.b, Tứ giác BOCF là hình vuông.c, Tứ giác CDOF là hình bình hành.d, OB.EF=OD.BFe, DC/DB=CE/BE.
Cho hình thang vuông ABCD (AB //CD, ) AB = 3cm, DC = 5cm. Gọi M và N lần lượt là trung điểm của AD và BC. Đường thẳng qua B song song với AD cắt DC tại E. a) Tính MN. b) Tứ giác ABED là hình gì? Vì sao? c) Gọi I là giao điểm của BE và MN. Chứng minh MI = 3.IN. d) Chứng minh tam giác ENC cân.