Cho một góc vuông xAy quay quanh đỉnh A của hình vuông ABCD. Cạnh Ax cắt các đường thẳng BC và CD theo thứ tự tại các điểm M, N và cạnh Ay cắt các đường thẳng BC, CD theo thứ tự tại các điểm P, Q.
a)Chứng minh các tam giác NAP; MAQ là các tam giác vuông cân
b)Gọi E là giao điểm của QM và PN; F và I theo thứ tự là trung điểm của các đoạn thẳng QM và PN. Chứng minh tứ giác ÀEI là hình chữ nhật
c)Khi góc xAy quay xung quanh đỉnh A thì các điểm F, I di chuyển trên đường thẳng cố định nào
Giúp mk với ạ.
Cho hình chữ nhật ABCD có AB=2.AD. Gọi E; I lần lượt là trung điểm của AB và CD. Nối D và E. Vẽ tia Dx sao cho Dx vuông góc với DE, và Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểmcủa DK và EM.
Tính số đo \(\widehat{DBK}\) ?
Cho hình vuông ABCD. Qua đỉnh A vẽ góc xAy vuông (tại A). Ax cắt AB tại M, cắt CD tại P. Ay cắt CD tại N.
a. CMR: Tam giác MAN vuông cân.
b. Gọi F là đỉnh thứ 4 của hình bình hành MANF. Gọi O là giao điểm của AF và MN. CMR: D, O, B thẳng hàng.
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
Cho hình chữ nhật ABCD. Vẽ BH ⊥ AC tại H. Gọi M, O, K lần lượt là trung điểm của AH, BH và CD. Tia CO cắt MB tại E. Tia MO cắt EH và BC lần lượt tại F và N
a, Tứ giác MOCK là hình gì
b, Chứng minh MK ⊥ MB
c, Chứng minh NE . FH = FE . NH
p/s: help em câu c với ạ
Cho hình chữ nhật ABCD. Có O là giao điểm 2 đường chéo AC và BC , Gọi M là TĐ của CD.
a) C/m: AOMD là hình thang vuông.
b) Đường thẳng qua A và song song vs BD cắt đường thẳng OM tại N. C/m tứ giác ANOD là hbh.
Cho hình thang ABCD AB=2 CD=5 AD=3 BC=4. Tia phan giác của góc ngoài tại đỉnh A và đỉnh D cắt nhau tại E, tia phân giác góc ngoài tại dỉnh B và E cắt nhau tại F. tính EF
cho hình chữ ngật ABCD có AB=3cm, BC=3cm
a) Tính BD
b) Qua B, vẽ đường thẳng vuông góc với BD cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. Chứng minh: tam giác BCD đồng dạng tam giác CFB. Tính CF
c) Gọi O là giao điểm của AC và BD. Nối EO cắt CF tại I và cắt BC tại K. Chứng minh: I là trung điểm của CF
d) chứng minh: D,K, F thẳng hàng