Bài 4. Cho hình chữ nhật ABCD (AB = 2AD), gọi M là trung điểm của AB. Từ M kẻ MN vuông góc CD tại N
a) Chứng minh tứ giác AMND là hình chữ nhật
b) Gọi K là điểm đối xứng với D qua M. Chứng minh B là trung điểm của KC
c) Gọi I là điểm giao của BD và CM. Biết AB = 2AD. Chứng minh NI = 1/3 BD
cho hình chữ nhật abcd vẽ bh vuông góc với ac. Gọi i là trung điểm của bh, k là trung điểm của ah, m là trung điểm của ch, n là trung điểm của ad, e là trung điểm của ab, f là trung điểm của dh, p là trung điểm của cd. CM:
a) MI vuông góc AB
b) AIMN là hình hình hành
c) I là trực tâm của tam giác ABM
d) BM vuông góc MN
e) BMFE là hình bình hành
f) EF vuông góc MN
g) KICP là hình bình hành
h) BK vuông góc PK
Cho hình chữ nhật ABCD và điểm E thuộc đường chéo BD. Qua E kẻ đường thẳng song song với AC cắt AD, BA lần lượt tại M, N. Vẽ hình chữ nhật MANF. a) CM: AF song song BD b) CM: E là trung điểm của CF
Cho hình chữ nhật ABCD. Điểm E \(\in\)AC, qua E kẻ đường thẳng song song với BD cắt AD, CD lần lượt tại M, N. Vẽ hình chữ nhật MDNF. Chứng minh rằng:
a) DF//AC
b) E là trung điểm của BF
Cho hình thang vuông ABCD(AB//CD,góc D=90 độ),M và N lần lượt là trung điểm của AD và BC:
a/Biết AB=10cm,CD=16cm.Tính độ dài MN?
b/Từ N vẽ đường thẳng song song với AD cắt CD tại K.Tứ giác DMNK là hình gì
Bài 5. Cho tam giác ABC có đường cao AH. Gọi M, N lần lượt là trung điểm của AB và AC
a) Tứ giác BMNC là hình gì? Vì sao?
b) Kẻ MI vuông góc BC tại I, NK vuông góc BC tại K. Chứng minh tứ giác MIKN là hình chữ nhật
c) So sánh IK và BC
Cho tứ giác ABCD . Gọi E, F,G,H lần lược là trung điểm của AB, BC, CD, AD Bé vịt nhỏ A) chứng minh rằng : tứ giác EFGH là hình bình hành b) cho AC vuông góc với BD . Chứng minh EFGH là hình chữ nhật . ( Vẽ hình , ghi giả thiết , kết luận đc 0.5 ₫