Cho tứ giác ABCD có diện tích S. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA
a, Tứ giác EFGH là hình gì? Vì sao?
b, Tính diện tích tứ giác EFGH theo S
Cho hình chữ nhật ABCD. M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ là hình thoi.
b) Các đường thẳng AC, BD, MP, NQ gặp nhau tại một điểm
c) Tính tỉ số diện tích các tứ giác MNPQ và ABCD
Hình thang cân ABCD có E,F lần lượt là trung điểm hai cạnh bên BC,CD. Gọi G là trung điểm của EF, qua G kẻ đường thẳng cắt AB tại H và cắt CD tại I. Chứng minh diện tích AHID= diện tích HBCI.
tứ giác ABCD có 2 đường chéo AC BD vuông góc với nhau. Gọi E;F;G;H lần lượt là trung điểm AB;BC;CD;AD.a) c/m tứ giác EFGH là hình chữ nhật.b) tính diện tích EFGH bt AC=8 cm;BD =6cm
Cho hình thang cân ABCD (AB//CD) và \(\widehat{D}\) = 45 độ. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Tính diện tích các tứ giác ABCD, MNPQ nếu AB = 2cm, CD = 6cm.
b) Tính tỉ số diện tích các tứ giác ABCD, MNPQ nếu các dữ liệu về góc D, cạnh AB, CD không nhất thiết phải như đề cho trên.
Cho tam giác ABC; M, N là trung điểm của AC và AB; ND//BM (D thuộc BC); diện tích ABC=a(cm2)
a) Tính diện tích CMND
b) a=128 (cm2); BC=32 (cm). Tính chiều cao của hình thang CMND
Cho tam giác ABC vuông tại A , canh AB=8cm cạnh BC =17cm. Trên BC lấy một điểm M. Vẽ hình bình hành ABMN . Tính diện tích của tứ giác ANCM
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm.
a) Tính đường cao AH.
b) Kẻ HE⊥AB, HF⊥AC (E∈AB, F∈AC). Tính EF.
c) Gọi M,N lần lượt là trung điểm của HB và HC. Tứ giác MNFE là hình gì? Vì sao? Tính diện tích tứ giác đó.