Xét ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền BD
nên \(AD^2=DH\cdot DB\)
hay \(BC^2=DH\cdot BD\)
Xét ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền BD
nên \(AD^2=DH\cdot DB\)
hay \(BC^2=DH\cdot BD\)
Cho ABC vuông tại A, Biết AB 6cm, AC 8cm . Vẽ đường tròn O đường kính
AB cắt BC tại H.
a) Tính AH, CH.
b) Kẻ OK AH tại K và tia OK cắt AC tại D. Chứng minh DH OH
Cho ABC vuông tại A, đường cao AH. Vẽ đường tròn (I) có đường kính HB cắt
cạnh AB tại D. Vẽ đường tròn (K) đường kính HC cắt AC tại E.
a) Chứng minh tứ giác ADHE là hình chữ nhật.
b) Chứng minh AD.AB AE.AC .
c) Cho AB 3cm,BC 5cm . Tính DE và diện tích tứ giác DEKI.
Cho hình chữ nhật ABCD có AD = 12 cn, CD = 16cm. Chứng minh rằng bốn điểm ABCD thuộc cùng một đường tròn. Tính bán kính của đường tròn đó ?
Cho hình chữ nhật ABCD có AB = 12 cm, BC = 5cm. Chứng minh rằng bốn điểm A, B, C, D thuộc cùng một đường tròn. Tính bán kính của đường tròn đó ?
Bài 1: Cho hình chữ nhật ABCD.
a) Chứng minh rằng bốn điểm A, B, C và D cùng thuộc một đường tròn.
b) Cho AB = 10cm và BC = 6cm. Tính bán kính của đường tròn trên.
1. Cho tam giác ABC, góc A = 90 độ, có AB = 5 cm, AC = 12 cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
2. Cho hình thang cân ABCD (AD//BC). Biết AB = 12 cm, AC = 16 cm và BC = 20 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
Cho tam giác ABC vuông tại A , BC = 10 cm , AC = 8cm . Kẻ đường cao AH . Tính AB , AH , BH , CH và góc B, C
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt tại AB và AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD chứng minh H là trực tâm của tam giác ABC Từ đó suy ra AH vuông góc với BC
Cho tam giác ABC ( gócA=90 độ) , lấy một điểm H bất kì trên cạnh AC , kẻ HM vuông góc BC (M thuộc BC)
a) Chứng minh 4 điểm A,B,M,H cùng thuộc một đường tròn
b) Chứng minh BH>AM