Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AB = 2CD.Gọi M,N lần lượt là trung điểm của các cạnh bên SA,SB và O là giao điểm của AC và BD .
a) Tìm giao tuyến của (SAC) và (SBD),(SAD) và (SBC) .
b) Chứng minh:MN // CD và MD // NC
c) Tìm giao điểm của đường thẳng AN với (SCD)
d)Gọi I trên SC sao cho SI = 2IC. C/m:SA // (IBD)
e) Gọi G là trọng tâm SBC. C/m:OG // (SCD) .
Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB. Gọi M là trung điểm của các cạnh SB. a) Tìm giao tuyến của mặt phẳng (SAD) với mặt phẳng (SBC)? b) Tìm giao tuyến I của đường thẳng DM với (SAC)? c) Tìm thiết diện của mặt phẳng (MDC) với hình chóp S.ABCD?
Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC) ?
b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN) ?
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN) ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang ( AD || BC, AD= 2BC ). Gọi M, N lần lượt là trung điểm SA và AB.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Chứng minh MN//(SBC)
c) Gọi O là giao điểm của AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (OMN)
Bài 5. Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB và AB = 2CD. Gọi E, F làn lượt là trung điểm của các cạnh SA, SB. a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD). b) Chứng minh rằng EF // (SCD). c) Chứng minh rằng DE // (SBC). d) Lấy điểm M thuộc cạnh SD. Gọi (P) đi là mặt phẳng qua M và song song với mặt phẳng (SAB). Tim giao tuyến của (P) và (SBC).
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB song song CD. Lấy điểm M thuộc SB. Tìm giao tuyến của (ADM) và (SAC)
Cho S.ABCD có đáy là hình thang vuông tại A,D. AB=AD=a , CD=2a , SD vuông góc với đáy , SD=a. TÍnh khoảng cách từ A đến SBC .
Cho hình chóp SABCD, ABCD là hình bình hành với AB=a, AD=2a. Tam giác SAB vuông tại A, lấy M∈AD, AM=x (0 < x ≤ 2a). Mặt phẳng (α) qua M // SA, AB cắt BC, SC, SD lần lượt tại N,P,Q
a. Tìm giao tuyến (SBC) & (SAD)
b. MNPQ là hình gì
c. Tính SMNPQ theo a và x
d. Tìm x để SMNPQ= \(\dfrac{3a^2}{8}\)
e. Tìm tập hợp giao điểm I của MQ và NP. Khi M chạy trên AD