Cho hình chóp SABCD. Đáy ABCD là hình vuông cạnh bằng a tâm O, SAB là tam giác đều có trọng tâm G và nằm trên mặt phẳng vuông góc với (ABCD). Tính bán kính R mặt cầu ngoại tiếp hình chóp.
Cho đường tròn tâm O bán kính r'. Xét hình chóp S.ABCF có SA vuông góc với mặt phẳng đáy, S và A cố định, SA = h cho trước và có đáy ABCD là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo AC và BD luôn luôn vuông góc với nhau
a) Tính bán kính r của mặt cầu đi qua 5 đỉnh của hình chóp
b) Hỏi đáy ABCD là hình gì để thể tích hình chóp đạt giá trị lớn nhất
Cho hình chóp S.ABC có đáy là am giác vuông tại B,
SA= SB =2a, ASB = 60, bSC =90, góc giữa hai mặt phẳng (SBC) và (ABC) bằng 45 . tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC
Cho hình nón đỉnh S, đường tròn đáy tâm O bán kính r=3, đường cao SO=3. Mặt phẳng (P) di động luôn vuông góc với SO tại điểm H (nằm giữa S và O) cắt mặt nón theo giao tuyến là đường tròn (C). Mặt cầu (T) chứa (C) và tiếp xúc với đáy hình nón tại O. Thể tích khối cầu (T) đạt min =?
Cho hình vuông ABCD cạnh a. Từ tâm O của hình vuông dựng đường thẳng \(\Delta\) vuông góc với mặt phẳng (ABCD). Trên \(\Delta\) lấy điểm S sao cho \(OS=\dfrac{a}{2}\). Xác định tâm và bán kính cầu ngoại tiếp hình chóp S.ABCD. Tính diện tích của mặt cầu và thể tích của khối cầu được tạo nên bởi mặt cầu đó ?
Cho hình chóp S.ABC và biết rằng có một mặt cầu tiếp xúc với tất cả các cạnh bên của hình chóp đồng thời tiếp xúc với ba cạnh của đáy tại trung điểm của mỗi cạnh đáy. Chứng minh hình chóp đó là hình chóp đều ?
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a và có đường cao h
a) Một hình trục có các đường tròn đáy tiếp xúc với các cạnh của tam giác đáy được gọi là hình trụ nội tiếp trong lăng trụ. Hãy tính diện tích xung quanh của hình trụ nội tiếp đó ?
b) Gọi I là trung điểm của cạnh BC. Đường thẳng A'I cắt hình trụ nội tiếp nói trên theo một đoạn thẳng. Tính độ dài đoạn thẳng đó ?
1)Trong không gian cho tam giác ABC đều có chu vi bằng 6a, gọi H là trung điểm BC. Khi quay tam giác ABC quanh trục AH ta được một hình nón tròn xoay. Tính thể tích của khối nón? 2)Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, BC=a√2. Góc giữa B'C và đáy bằng 45⁰. Tính thể tích V của khối lăng trụ đã cho?
Cho tứ diện ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD)
a) Chứng minh H là tâm đường tròn ngoại tiếp tam giác BCD. Tính độ dài đoạn AH
b) Tính diện tích xung quanh và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH