a: Gọi giao của NP với AC là G
=>G thuộc (SAC) giao (MNP)
=>(SAC) giao (MNP)=MG
b: MP//SD
Gọi giao của PN với CD là E
=>E thuộc (SCD) giao (MNP)
=>(SCD) giao (MNP)=xy, xy đi E và xy//MP//SD
a: Gọi giao của NP với AC là G
=>G thuộc (SAC) giao (MNP)
=>(SAC) giao (MNP)=MG
b: MP//SD
Gọi giao của PN với CD là E
=>E thuộc (SCD) giao (MNP)
=>(SCD) giao (MNP)=xy, xy đi E và xy//MP//SD
Cho hình chóp SABCD, có đáy ABCD là hình bình hành tâm O.
a) Tìm giao tuyến của hai mặt phẳng SAC và SBD ?
b) Gọi M là trung điểm của SD. Chứng minh: SB / /MAC?
c) Gọi I là trung điểm của AB. Tìm giao điểm của đường thẳng MI và mặt phẳng SAC ?
d) Thiết diện của hình chóp cắt bởi mặt phẳng P đi qua điểm M và song song với SBC?
Cho hình chóp S.ABCD với ABCD là hình thang đáy lớn AD
a) Xác định giao tuyến của 2 mp (SAB) và (SCD)
b) Gọi M là trung điểm của BC, mp (P) qua M và song song với 2 đường thẳng SA và CD. Xác định thiết diện của mp (P) với hình chóp đã cho
Bài 2 :Cho hình chóp S.ABCD. Tứ giác ABCD là hình bình hành Gọi M, N, P lần lượt là trung điểm AB, CD và SA. a. CMR MN song song với các mp (SBC) và (SAD) b.Xác định giao tuyến của (SBD) với mp(MNP) c.CMR SC song song với (MNP) d.Gọi G,G, lần lượt là trọng tâm các tam giác ABC và tam giác anh CMR GG, // với (SAD)
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trong đạn AD sao cho AD = 3 AM
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Đường thẳng qua M và song song với AB cắt CI tại N. Chứng minh rằng NG // (SCD)
c) Chứng minh rằng MG // (SCD)
Cho hình chóp S.ABCD, ABCD là tứ giác không có cặp cạnh nào song song với nhau. Gọi M, N, K theo thứ tự là trung điểm của AB, AD, CD. I, J theo thứ tự là trọng tâm △SAB, △SAD.
a)Tìm giao tuyến của các cặp mặt phẳng sau: (SAC)\(\cap\) (SBD); (SAB) \(\cap\) (SCD) và (SAD) \(\cap\) (SBC)?
b)Tìm giao điểm của đt MN và mặt phẳng (SAC)?
c)Cmr: IJ//MN và MN//BD. Từ đó suy ra:IJ//(ABCD)
d)Tìm giao tuyến của 2 mặt phẳng (IJK) và (ABCD)
e)Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (IJK)?
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn là AD và AD = 2BC. Gọi O là giao điểm của AC và BD, G là trọng tâm của tam giác SCD
a) Chứng minh rằng OG // (SBC)
b) Cho M là trung điểm của SD. Chứng minh rằng CM // (SAB)
c) Giả sử điểm I nằm trong đoạn SC sao cho \(SC=\dfrac{3}{2}SI\). Chứng minh rằng SA // (BID)
Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm AB,AD,SO. Xác định thiết diện của hình chóp với mặt phẳng (MNP)
cho hình chóp Sabcd có đấy abcd là hình bình hành với ab = 10 biết tam giác scd đều gọi M là trung điểm Sa một mặt phẳng a đi qua M song song với ab và sc cắt hình thêm tiets diện có chu vi là
Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
a) Chứng minh MN // (SBC); MN // (SAD).
b) Gọi I là trung điểm SA. Tìm giao điểm K của (INM) và SD.
c) Chứng minh: SB, SC // (IMN).
d) Gọi H là trung điểm IO. Chứng minh HK // (SBC).
Cho hình chóp S.ABCD có đáy ABCD là hbh tâm O. Gọi M là trung điểm BC. P thuộc SA sao cho AP=2SP
a, Tìm giao điểm của PM và (SBD). Chứng minh SC//(MDP)
b, (Q) đi qua P và song song với AD, SB. Tìm thiết diện của chóp cắt bởi (Q)