Hình bạn tự vẽ
Ta có \(\left\{{}\begin{matrix}SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp SI\) (1)
Do \(\Delta SAD\) đều \(\Rightarrow SI\perp AD\) (2)
(1), (2) \(\Rightarrow SI\perp\left(ABCD\right)\)
Dễ dàng nhận ra ABKD là hình vuông
\(BD=\sqrt{AB^2+AD^2}=a\sqrt{2}\) ; \(BC=\sqrt{BK^2+CK^2}=a\sqrt{2}\)
\(\Rightarrow BD^2+BC^2=4a^2=CD^2\)
\(\Rightarrow\Delta DBC\) vuông cân tại B \(\Rightarrow CB\perp BD\)
Kéo dài IH và CB cắt nhau tại K
\(IH//BD\) (đường trung bình) \(\Rightarrow BC\perp IH\Rightarrow CK\perp\left(SHI\right)\)
\(\Rightarrow\widehat{CSK}\) là góc giữa SC và (SHI)
\(IC=\sqrt{ID^2+CD^2}=\sqrt{\left(\frac{AD}{2}\right)^2+CD^2}=\frac{a\sqrt{17}}{2}\)
\(SI=\frac{a\sqrt{3}}{2}\) (trung tuyến trong tam giác đều cạnh a)
\(\Rightarrow SC=\sqrt{SI^2+IC^2}=a\sqrt{5}\)
\(BK=BH.sin\widehat{KHB}=\frac{AB}{2}.\frac{IA}{IH}=\frac{AB}{2}.\frac{AB}{2\sqrt{AH^2+IA^2}}=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow CK=BC+BK=a\sqrt{2}+\frac{a\sqrt{2}}{4}=\frac{5a\sqrt{2}}{4}\)
\(\Rightarrow sin\widehat{CSK}=\frac{CK}{SC}=\frac{\sqrt{10}}{4}\Rightarrow\widehat{CSK}\approx52^014'\)