C1/Cho hình thang ABCD vuông tại A và B có đáy lớn AD = 2a,AB = BC = a,I là trung điểm AD,O là trung điểm BI.Trên đường thẳng vuông góc với mp ABCD tại O lấy điểm S sao cho SO = \(\frac{a\sqrt{6}}{2}\).Xác định và tính đoạn vuông góc chung của BI và SD.
C2/Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a,SA vuông góc với mp đáy và SA= 3a.Gọi M là trung điểm của AB,G là trọng tâm của tam giác SAC.
a/ tính góc giữa SM và mp SAC
b/tính góc giữa mp SMC và ABC
c/tính khoảng cách từ G đến mp SAB
d/tính khoảng cáh từ B đến mp SMC
e/tính khoảng cách giữa hai đường thẳng SM và BC
Câu 1:
\(ABCI\) là hình vuông \(\Rightarrow\left\{{}\begin{matrix}CD=\sqrt{IC^2+ID^2}=a\sqrt{2}\\AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow AC^2+CD^2=AD^2\Rightarrow\Delta ACD\) vuông cân tạiC
\(\Rightarrow OC\perp CD\) \(\Rightarrow CD\perp\left(SOC\right)\)
Từ O kẻ \(OH\perp SC\Rightarrow OH\perp\left(SCD\right)\) \(\Rightarrow OH\perp SD\)
\(\left\{{}\begin{matrix}BI\perp SO\\BI\perp OC\end{matrix}\right.\) \(\Rightarrow BI\perp\left(SOC\right)\Rightarrow BI\perp OH\)
\(SC=\sqrt{SO^2+OC^2}=a\sqrt{2}\) \(\Rightarrow SH=\frac{SO^2}{SC}=\frac{3a\sqrt{2}}{4}\)
Qua H kẻ đường thẳng song song CD cắt SD tại K
\(\frac{SH}{SC}=\frac{HK}{CD}\Rightarrow HK=\frac{SH.CD}{SC}=\frac{3a}{4}\)
Trên toa OI lấy điểm P sao cho \(OP=\frac{3a}{4}\)
\(\Rightarrow OHKP\) là hình chữ nhật \(\Rightarrow OH//KP\Rightarrow KP\) là đoạn vuông góc chung của \(BI\) và SD
\(\frac{1}{OH^2}=\frac{1}{SO^2}+\frac{1}{OC^2}\Rightarrow KP=OH=\frac{SO.OC}{\sqrt{SO^2+OC^2}}=\frac{a\sqrt{6}}{4}\)
Câu 2:
a/ Kẻ \(MH\perp AC\Rightarrow MH\perp\left(SAC\right)\)
\(\Rightarrow\widehat{MSH}\) là góc giữa SM và (SAC)
\(SM=\sqrt{SA^2+\left(\frac{AB}{2}\right)^2}=a\sqrt{10}\) ; \(MH=\frac{1}{2}\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)
\(sin\widehat{MSH}=\frac{MH}{SM}=\frac{\sqrt{30}}{20}\Rightarrow\widehat{MSH}\approx15^053'\)
b/ \(\left\{{}\begin{matrix}MC\perp AB\\MC\perp SA\end{matrix}\right.\) \(\Rightarrow MC\perp\left(SAB\right)\)
\(\Rightarrow\widehat{SMA}\) là góc giữa \(\left(SMC\right)\) và \(\left(ABC\right)\)
\(tan\widehat{SMA}=\frac{SA}{AM}=3\Rightarrow\widehat{SMA}\approx71^033'\)
c/ Gọi N là trung điểm AC \(\Rightarrow NG=\frac{1}{3}NS\) (t/c trọng tâm)
\(\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{1}{3}d\left(N;\left(SAB\right)\right)\)
Từ N kẻ \(NK\perp AB\Rightarrow NK\perp\left(SAB\right)\)
\(\Rightarrow NK=d\left(N;\left(SAB\right)\right)\)
\(NK=\frac{1}{2}.\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{a\sqrt{3}}{6}\)
Bài 2:
d/ Do \(AM=BM\Rightarrow d\left(B;\left(SMC\right)\right)=d\left(A;SMC\right)\)
Theo cmt ta có \(CM\perp\left(SAB\right)\)
Từ A kẻ \(AP\perp SM\Rightarrow AP\perp\left(SMC\right)\)
\(\Rightarrow AP=d\left(A;\left(SMC\right)\right)=d\left(B;\left(SMC\right)\right)\)
\(\frac{1}{AP^2}=\frac{1}{SA^2}+\frac{1}{AM^2}\Rightarrow AP=\frac{SA.AM}{\sqrt{SA^2+AM^2}}=\frac{3a\sqrt{10}}{10}\)
e/
Do \(MN//BC\) (t/c đường trung bình) \(\Rightarrow BC//\left(SMN\right)\)
\(\Rightarrow d\left(BC;SM\right)=d\left(BC;\left(SMN\right)\right)=d\left(B;\left(SMN\right)\right)\)
Mà \(AM=BM\Rightarrow d\left(B;\left(SMN\right)\right)=d\left(A;\left(SMN\right)\right)\)
Từ A kẻ \(AQ\perp MN\Rightarrow MN\perp\left(SAQ\right)\)
Từ A kẻ \(AT\perp SQ\Rightarrow AT\perp\left(SMN\right)\)
\(\Rightarrow AT=d\left(A;\left(SMN\right)\right)=d\left(BC;SM\right)\)
\(AQ=\frac{1}{2}\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)
\(\frac{1}{AT^2}=\frac{1}{AQ^2}+\frac{1}{SA^2}\Rightarrow AT=\frac{SA.AQ}{\sqrt{SA^2+AQ^2}}=\frac{3a\sqrt{13}}{13}\)