Vì ABCD là hbh\(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}=\overrightarrow{a};\overrightarrow{AD}=\overrightarrow{BC}=\overrightarrow{b}\)
Theo quy tắc trung điểm => \(2\overrightarrow{BI}=\overrightarrow{BD}+\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BC}=\overrightarrow{BA}+2\overrightarrow{AD}\)
\(\Rightarrow\overrightarrow{BI}=\frac{1}{2}\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{b}-\frac{1}{2}\overrightarrow{a}\)
Gọi K là TĐ BI=> CK là trung tuyến
Theo quy tắc TĐ: \(\overrightarrow{CK}=\frac{\overrightarrow{CB}+\overrightarrow{CI}}{2}=\frac{\overrightarrow{CB}+\frac{\overrightarrow{CD}}{2}}{2}\)
Có G là trọng tâm=> \(\overrightarrow{CG}=\frac{2}{3}\overrightarrow{CK}\)
\(\Leftrightarrow\overrightarrow{CG}=\frac{\overrightarrow{CB}+\frac{\overrightarrow{CD}}{2}}{3}=\frac{1}{3}\overrightarrow{DA}+\frac{1}{6}\overrightarrow{BA}=-\frac{1}{3}\overrightarrow{b}-\frac{1}{6}\overrightarrow{a}\)