a) Xét \(\Delta ABH\) và \(\Delta ACE\) có :
\(\widehat{BAC}:chung;\widehat{AHB}=\widehat{CEB}=90^o\)
\(\Rightarrow\) \(\Delta ABH\) ~ \(\Delta ACE\)
\(\Rightarrow\) \(\frac{AB}{AC}=\frac{AH}{AE}\Rightarrow AB.AE=AH.AC\left(1\right)\)
b) Xét \(\Delta BCH\) và \(\Delta CAF\) có :
\(\widehat{BHC}=\widehat{AFC}=90^o;\widehat{BCH}=\widehat{CAF}\)
\(\Rightarrow\) \(\Delta BCH\) ~ \(\Delta CAF\)
\(\Rightarrow\) \(\frac{BC}{AC}=\frac{CH}{AF}\Rightarrow\frac{AD}{AC}=\frac{CH}{AF}\Rightarrow AD.AF=AC.CH\) (2)
Từ (1) và (2) \(\Rightarrow\) AB . AE + AD . AF = AH . AC + AC . CH
\(\Rightarrow\) AB . AE + AD . AF = AC (AH + CH )
\(\Rightarrow\) AB . AE + AD . AF = AC2