Tứ giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Mỹ Lệ

Cho hình bình hành ABCD, trên tia đối của tia AD lấy F sao cho: AD=AF; trên tia đối của tia CD lấy E sao cho: CE=CD

a) AFBC,ABEC là hình gì?

b) So sánh diện tích 3 hình: ABCD,AFBC,ABEC

c) Chứng minh F,B,E thẳng hàng.

d) AFEC là hình gì? So sánh diện tích AFEC với ABCD.

Đặng Quý
31 tháng 5 2017 lúc 20:37

Tứ giác

a).ta có: \(\left\{{}\begin{matrix}FA=AD=BC\\AF\text{//}BC\end{matrix}\right.\)\(\Rightarrow\) tứ giác FACB là hình bình hành.

tương tự , tứ giác ABEC cũng là hình bình hành.

b).

ta có tam giác FAB= tam giác ADC (c-g-c) vì:

FA=AD(gt

AB=CD(ABCD là hbh)

góc FAB=góc ADC (đồng vị )

nên \(S_{\Delta FAB}=S_{\Delta ADC}\)

\(S_{AFBC}=S_{\Delta FAB}+S_{\Delta ABC}=S_{\Delta ADC}+S_{\Delta ABC}=S_{ABCD}\)

tương tự, \(S_{ABCD}=S_{ABEC}\)

c).ta có: \(\left\{{}\begin{matrix}FA=AD\\DC=CE\end{matrix}\right.\) nên AC là đường trung bình của tam giác FDE.

suy ra AC//FE.

đồng thời AC//FB (vì FBCA là hình bình hành)

nên F,B,E thẳng hàng (theo tiên đề Ơ- clit)

d). tứ giác ACEF là hình thang vì AC//FE.

các tam giác FAB, ABC,BCE,ADC có diện tích bằng nhau vì chúng bằng nhau (c-g-c hoặc c-c-c)

\(S_{ACEF}=S_{\Delta FAB}+S_{\Delta ABC}+S_{\Delta BCE}=3S_{\Delta ABC}\)

\(S_{ABCD}=S_{\Delta ABC}+S_{\Delta ADC}=2S_{\Delta ABC}\)

\(S_{FACB}=S_{\Delta FAB}+S_{\Delta ABC}=2S_{\Delta ABC}\)

từ 3 dòng trên, suy ra được: \(S_{ACEF}< S_{ABCD}\)\(S_{ACEF}< S_{FACB}\)


Các câu hỏi tương tự
Ngọc Khánh
Xem chi tiết
- Hoàng Nam -
Xem chi tiết
Nguyễn Minh Thư
Xem chi tiết
Xem chi tiết
Tạ Thị Diễm Quỳnh
Xem chi tiết
Cookie ~ A.R.M.Y
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
linhlinh
Xem chi tiết
Hương
Xem chi tiết