Cho hình bình hành ABCD, O là giao điểm của AC và BD lấy E thuộc CD sao cho ED = 1/2 CD. AE cắt BD tại K. Từ O kẻ đường thẳng song song với AE cắt CD tại F. CM
1) F là trung điểm EC
2) Chứng minh DE = FE = FC.
3) Chứng minh K là trung điểm của OD.
Cho ΔABC vuông tại A (AC < AB). Trên đoạn BC lấy điểm D sao cho CD = CA. Từ D kẻ đường thẳng vuông góc với BC, đường thẳng này cắt AC kéo dài tại E.
a) Chứng minh ΔABC = ΔDEC
b) Gọi H là giao điểm của AB và DE. Chứng minh CH là đường trung trực của đoạn thẳng BE.
c) Từ C kẻ đường thẳng song song với AB, đường thẳng này cắt ED kéo dài tại F. Kẻ FI vuông góc với HC tại I. Chứng minh FI là đường trung tuyến của ΔHFC.
Cho ΔABC vuông tại A. Tia phân giác của \(\widehat{ABC}\) cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA.
a) Chứng minh BD là đường trung trực của đoạn thẳng AE.
b) Qua A kẻ đường thẳng song song với BD cắt ED tại K. Chứng minh: KE < 2AB
cho tam giác ADC qua kẻ đường thẳng song song với CD cắt đường thẳng kẻ qua D và sông song với AC tại B gọi O là giao điểm của AD BC chứng minh AB=CD AC=BD
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên tia đối CA lấy điểm E sao cho BD= CE. Qua D kẻ đường thẳng song song với AC cắt BC tại F. Gọi O là giao điểm của DE và CF.
a) Chứng minh tam giác BDE cân
b) O là trung điểm của CF
c) CD // EF
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
Cho tam giác ABC nhọn. Vẽ đường thẳng xy qua A và song song với BC. Từ B vẽ BD ⊥ AC ở D, BD cắt xy tại E. Trên tia BC lấy điểm F sao cho BF = AE
a) CMR: EF = AB và EF // AB
b) Từ F vẽ FK ⊥ BE ở K. CM: FK = AD
c) Gọi I là trung điểm của KD. Chứng minh ba điểm A,I,F thẳng hàng
d) Gọi M là trung điểm của đoạn thẳng AB, MI cắt EF tại N. CM: N là trung điểm của EF
Cho tam giác ABC, trên tia đối của AB lấy D sao cho AD=AB. Lấy G thuộc AC sao cho AG = 1/3.AC. Tia DG cắt BC tại E; qua E vẽ đường thẳng song song với BD; qua D vẽ đường thẳng song song với BC. Hai đường này cắt nhau tại F. Gọi M là giao của È và CD. Chứng minh 3 điểm B, G, M thẳng hàng.
Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE