Cho hình bình hành ABCD. M, N lần lượt là trung điểm của AB, AD. AC cắt BD
tại O.
a. Tính DA DB OA OB ON OM
Cho hình bình hành ABCD tâm O ,M là một điểm bất kì .CM rằng: a) vecto OA+OB+OC+OD=0 b) vecto DA-DB+DC=0 c)vecto DO+AO=AB d)vecto MA+MC=MB+MD
Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số \(\dfrac{AB}{AM}+2\dfrac{AC}{AN}\)
Cho hình thang ABCD với đáy BC = 2AD. Gọi M, N, P, Q lần lượt là trung điểm của BC, MC, CD, AB và E là điểm thỏa mãn veto BN = vecto QE. Xác định vị trí điểm E Cho hình thang ABCD với đáy BC = 2AD. Gọi M, N, P, Q lần lượt là trung điểm của BC, MC, CD, AB và E là điểm thỏa mãn veto BN = vecto QE. Xác định vị trí điểm E
Bài 2: Gọi O là tâm của hình bình hành ABCD. CMR: a/ vec BA + vec DA + vec AC = vec 0 b/ vec DA - vec DB + vec DC = vec 0 c/ overline DA - overline DB = overline OD - overline OC
Cho hình bình hành ABCD có tâm là O. Gọi M, N lần lượt là trung điểm của BC, DC. Chứng minh:
a) \(\overrightarrow{OA}+\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{0}\)
b) \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+2\overrightarrow{AB}\right)\)
c) \(\overrightarrow{AM}+\overrightarrow{AN}=\dfrac{3}{2}\overrightarrow{AC}\)
Cho tứ giác ABCD. Gọi E,F lần lượt là trung điểm của AB, CD và O là trung điểm cừa. Chứng minh rằng: vectơ OA+OB+OC+OD= vectơ 0
Giải chi tiết giúp e với ạ e đang cần gấp ạ
cho tam giác ABC : a)tìm các điểm M và N sao cho vector MA - vector MB + vector MC = vector 0 và 2 vector NA + vector NB + vector NC = vector 0
b) với các điểm M,N ở câu a), tìm các số p và q sao cho vector MN = p nhân vector AB + q nhân vector AC
Cho hình vuông ABCD cạnh a a) xác định điểm K thỏa mãn vecto KA+ vecto KB+ vecto KC+4vecto KD = vecto 0 b) tìm {M} thỏa mãn : | vecto MA+ vecto MB + vecto MC +4vecto MF| = 2a c) tìm {N} thỏa mãn : |2 vecto NA- vecto NB + vecto NC | = | vecto ND +vecto NC|